|
|
A Kansei Engineering Integrated Approach for Customer-needs Mining from Online Product Reviews |
Jia Danping, Jin Jian, Geng Qian, Deng Siyu |
School of Government, Beijing Normal University, Beijing 100875 |
|
|
Abstract In a fiercely competitive market, companies often have to optimize products and marketing strategies according to customer requirements (CRs). Rapid development of an economy increases the demand for a higher level of product improvement to address customers’ emotional needs. Aside from functional features, products are required to have emotional aesthete designs, making it important to identify emotional CRs. Kansei engineering is a mechanism that connects customer emotions with product features to reveal emotional CRs. Accordingly, the word2vec model and a sliding window technique are used in this study to semi-automatically generate a domain Kansei lexicon and a product feature dictionary. Additionally, a feature-Kansei model is developed to better represent CRs. To evaluate the effectiveness of the proposed model, an empirical case study is conducted using iPhone reviews. Compared with sentiment dictionary-based approaches, the integration of sentiment analysis and Kansei engineering helps to capture emotional CRs from online opinions effectively and provides more critical insights for decision-makers.
|
Received: 04 April 2019
|
|
|
|
1 QiJ Y, ZhangZ P, JeonS, et al. Mining customer requirements from online reviews: A product improvement perspective[J]. Information & Management, 2016, 53(8): 951-963. 2 HelanderM G, Po ThamM. Hedonomics—affective human factors design[J]. Ergonomics, 2003, 46(13-14): 1269-1272. 3 YanagisawaH. Kansei quality in product design[M]// Emotional Engineering. London: Springer, 2011: 289-310. 4 魏小利. 产品设计中的感性需求研究[D]. 济南: 山东轻工业学院, 2008. 5 孙永波, 高雪. 移动App营销模式对消费者购买意愿的影响[J]. 商业经济研究, 2016(16): 61-63. 6 XuX, WangX Q, LiY B, et al. Business intelligence in online customer textual reviews: Understanding consumer perceptions and influential factors[J]. International Journal of Information Management, 2017, 37(6): 673-683. 7 WangY R, LuX, TanY J. Impact of product attributes on customer satisfaction: An analysis of online reviews for washing machines[J]. Electronic Commerce Research and Applications, 2018, 29: 1-11. 8 JinJ, LiuY, JiP, et al. Understanding big consumer opinion data for market-driven product design[J]. International Journal of Production Research, 2016, 54(10): 3019-3041. 9 NagamachiM. Kansei engineering approach to automotive[J]. Journal of the Society of Automotive Engineers of Japan, 1989, 43: 94-100. 10 罗仕鉴, 潘云鹤. 产品设计中的感性意象理论、技术与应用研究进展[J]. 机械工程学报, 2007, 43(3): 8-13. 11 罗仕鉴, 朱上上. 用户和设计师的产品造型感知意象[J]. 机械工程学报, 2005, 41(10): 28-34. 12 WangW M, LiZ H, TianZ G, et al. Extracting and summarizing affective features and responses from online product descriptions and reviews: A Kansei text mining approach[J]. Engineering Applications of Artificial Intelligence, 2018, 73: 149-162. 13 郑丽娟, 王洪伟. 基于情感本体的在线评论情感极性及强度分析: 以手机为例[J]. 管理工程学报, 2017, 31(2): 47-54. 14 由丽萍, 郎宇翔. 基于商品评论语义分析的情感知识图谱构建与查询应用[J]. 情报理论与实践, 2018, 41(8): 132-136, 131. 15 范炜昊, 徐健. 基于网络用户评论情感计算的用户痛点分析——以手机评论为例[J]. 情报理论与实践, 2018, 41(1): 94-99. 16 JinJ, LiuY, JiP, et al. Review on recent advances of information mining, from big consumer data for product design[J]. Journal of Computing and Information Science in Engineering, 2019, 19(1): 010801. 17 KotlerP. Marketing management: The millenium edition[M]. New York: Prentice Hall, 2000. 18 李少波, 全华凤, 胡建军, 等. 基于在线评论数据驱动的产品感性评价方法[J]. 计算机集成制造系统, 2018, 24(3): 752-762. 19 王年文, 王剑. 面向感性需求的家庭服务机器人造型设计研究[J]. 机械设计, 2018, 35(11): 111-116. 20 王雪洁, 肖旺群. 基于感性意象的工业机器人造型设计研究[J]. 机械设计, 2016, 33(8): 117-120. 21 林晨晔. 基于感性工学的定量化色彩趋势研究[J]. 包装工程, 2015, 36(18): 70-73, 82. 22 田正清, 车建明, 李巨韬, 等. 基于感性工学与Kano模型的自行车造型需求研究[J]. 机械设计, 2017, 34(5): 113-118. 23 WangC H, ChinH T. Integrating affective features with engineering features to seek the optimal product varieties with respect to the niche segments[J]. Advanced Engineering Informatics, 2017, 33: 350-359. 24 HsiaoY H, ChenM C, LiaoW C. Logistics service design for cross-border E-commerce using Kansei engineering with text-mining-based online content analysis[J]. Telematics and Informatics, 2017, 34(4): 284-302. 25 ChiuM C, LinK Z. Utilizing text mining and Kansei engineering to support data-driven design automation at conceptual design stage[J]. Advanced Engineering Informatics, 2018, 38: 826-839. 26 王仁武, 宋家怡, 陈川宝. 基于word2vec的情感分析在品牌认知中的应用研究[J]. 图书情报工作, 2017, 61(22): 5-12. |
|
|
|