|
|
Research on the Extraction of Synonymous Representation Patterns for Coreference Event Recognition |
Wang Junze1,2, Song Xiaojiong1,2, Du Hongtao3 |
1.School of Public Administration, Huazhong University of Science and Technology, Wuhan 430074 2.Non-traditional Security Center, Huazhong University of Science and Technology, Wuhan 430074 3.China Industrial Control Systems Cyber Emergency Response Team, Beijing 100040 |
|
|
Abstract In the field of coreference resolution, many studies have focused on the issue of entity coreference resolution, while papers about event coreference resolution are fewer. The flexibility of event representation means that one of the key points of event coreference resolution tasks is constructing a model for computing the similarity between events representation. Similar representations of the same event include not only synonymous representations at a word level but also synonymous representations at a sentence level. In this paper, based on the characteristics of the news corpus, we designed a strategy which can construct a synonym knowledge base automatically, and account for the processing of abbreviations and appositives. Conversely, on the basis of synonym expression patterns at the word level, we also designed a strategy for identifying synonym expression instances at a sentence level so as to extract synonymous representation patterns at this level and eliminate redundant components in patterns. Experiments on real data sets show the effectiveness of the proposed strategy. Based on the extracted synonymous representation pattern pairs at the word and sentence levels, we can effectively improve the effect of event coreference resolution. Our study can be regarded as a supplement to existing research on event coreference resolution.
|
Received: 11 March 2019
|
|
|
|
1 LeeH, RecasensM, ChangA, et al. Joint entity and event coreference resolution across documents[C]// Proceedings of the Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Stroudsburg: Association for Computational Linguistics, 2012: 489-500. 2 TomadakiE, SalwayA. Matching verb attributes for cross-document event coreference[C]// Proceedings of Interdisciplinary Workshop on the Identification and Representation of Verb Features and Verb Classes, 2005: 127-132. 3 周强, 施水才, 李渝勤, 等. 句子重述技术在中文文本摘要中的应用[J]. 情报学报, 2008, 27(6): 897-901. 4 王厚峰. 汉语篇章的指代消解浅论[J]. 语言文字应用, 2004(4): 113-119. 5 徐元子. Web数据集成中有价值事件识别研究[D]. 济南: 山东大学, 2014. 6 宋洋, 王厚峰. 共指消解研究方法综述[J]. 中文信息学报, 2015, 29(1):1-12. 7 RaoD, McNameeP, DredzeM. Streaming cross document entity coreference resolution[C]// Proceedings of the 23rd International Conference on Computational Linguistics: Posters. Stroudsburg: Association for Computational Linguistics, 2010: 1050-1058. 8 SongD Z, HeflinJ. Domain-independent entity coreference in RDF graphs[C]// Proceedings of the 19th ACM International Conference on Information and Knowledge Management. New York: ACM Press, 2010: 1821-1824. 9 LeeH, ChangA, PeirsmanY, et al. Deterministic coreference resolution based on entity-centric, precision-ranked rules[J]. Computational Linguistics, 2013, 39(4): 885-916. 10 ElkhlifiA, FaizR. Event extraction approach for Web 2.0[C]// Proceedings of the ACS/IEEE International Conference on Computer Systems and Applications. IEEE, 2010: 1-8. 11 UzZamanN, AllenJ F. Extracting events and temporal expressions from text[C]// Proceedings of the IEEE Fourth International Conference on Semantic Computing. IEEE, 2010: 1-8. 12 ChenZ, JiH. Graph-based event coreference resolution[C]// Proceedings of the Workshop on Graph-based Methods for Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2009: 54-57. 13 BaggaA, BaldwinB. Cross-document event coreference: Annotations, experiments, and observations[C]// Proceedings of the Workshop on Coreference and its Applications. Stroudsburg: Association for Computational Linguistics, 1999: 1-8. 14 SaltonG, WongA, YangC S. A vector space model for automatic indexing[J]. Communications of the ACM, 1975, 18(11): 613-620. 15 ElkhlifiA, FaizR. Automatic annotation approach of events in news articles[J]. International Journal of Computing & Information Sciences, 2009, 7(1): 40-50. 16 BejanC, HarabagiuS. Unsupervised event coreference resolution with rich linguistic features[C]// Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2010: 1412-1422. 17 McConkyK, NagiR, SuditM, et al. Improving event co-reference by context extraction and dynamic feature weighting[C]// Proceedings of the IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support. IEEE, 2012: 38-43. 18 ChenZ, JiH, HaralickR. A pairwise event coreference model, feature impact and evaluation for event coreference resolution[C]// Proceedings of the Workshop on Events in Emerging Text Types. Stroudsburg: Association for Computational Linguistics, 2009: 17-22. 19 HumphreysK, GaizauskasR, AzzamS. Event coreference for information extraction[C]// Proceedings of the Workshop on Operational Factors in Practical, Robust Anaphora Resolution for Unrestricted Texts. Stroudsburg: Association for Computational Linguistics, 1997: 75-81. 20 BejanC A, TitsworthM, HicklA, et al. Nonparametric Bayesian models for unsupervised event coreference resolution[C]// Proceedings of the 23rd Annual Conference on Neural Information Processing Systems, 2009: 73-81. 21 王瑞琴, 杨小明, 楼俊钢. 词汇语义相关性度量研究[J]. 情报学报, 2016, 35(4): 389-404. 22 刘伟. 互联网同义词搜索中的词义聚类问题研究[J]. 图书情报工作, 2013, 57(16): 15-19. 23 WiddowsD, DorowB. A graph model for unsupervised lexical acquisition[C]// Proceedings of the 19th International Conference on Computational linguistics. Stroudsburg: Association for Computational Linguistics, 2002, 1: 1-7. 24 DavidovD, RappoportA. Efficient unsupervised discovery of word categories using symmetric patterns and high frequency words[C]// Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2006: 297-304. 25 KozarevaZ, RiloffE, HovyE. Semantic class learning from the web with hyponym pattern linkage graphs[C]// Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2008: 1048-1056. 26 LinD K. Automatic retrieval and clustering of similar words[C]// Proceedings of the 17th International Conference on Computational linguistics. Stroudsburg: Association for Computational Linguistics, 1998, 2: 768-774. 27 HarrisZ S. Distributional structure[J]. WORD, 1954, 10(2-3): 146-162. 28 MillerG A. WordNet: A lexical database for English[J]. Communications of the ACM, 1995, 38(11): 39-41. 29 DongZ D, DongQ. HowNet—A hybrid language and knowledge resource[C]// Proceedings of the International Conference on Natural Language Processing and Knowledge Engineering. IEEE, 2003: 820-824. 30 JiH, GrishmanR, ChenZ, et al. Cross-document event extraction and tracking: Task, evaluation, techniques and challenges[C]// Proceedings of the International Conference on Recent Advances in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2009: 166-172. 31 张小克. 现代汉语缩略语新论[J]. 广西民族学院学报(哲学社会科学版), 2004, 26(3): 112-116. 32 沈嘉懿, 李芳, 徐飞玉, 等. 中文组织机构名称与简称的识别[J]. 中文信息学报, 2007, 21(6): 17-21. 33 SunJ, GaoJ F, ZhangL, et al. Chinese named entity identification using class-based language model[C]// Proceedings of the 19th International Conference on Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2002, 1: 1-7. 34 王厚峰. 汉语缩略语自动处理研究现状[J]. 中文信息学报, 2011, 25(5): 60-67, 82. 35 胡博磊, 贺瑞芳, 孙宏, 等. 基于条件随机域的中文事件类型识别[J]. 模式识别与人工智能, 2012, 25(3): 445-449. 36 白如江, 冷伏海, 廖君华. 基于混合内容线索特征的语义组块标注研究[J]. 情报学报, 2017, 36(4): 382-391. 37 周强. 汉语基本块规则的自动学习和扩展进化[J]. 清华大学学报(自然科学版), 2008, 48(1): 88-91. 38 孙广路. 基于统计学习的中文组块分析技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2008: 29-30. 39 王君泽, 曾润喜, 杜洪涛. 基于网页转载关系判别的网络舆情传播态势分析[J]. 情报杂志, 2015, 34(1): 144-149. |
|
|
|