|
|
Adaptive Computing Method for the Determination of Scientific and Technological Innovation Indicators Based on a Knowledge Graph |
Liu Zhihui, Wei Juanxia, Zhang Junsheng |
Institute of Scientific and Technical Information of China, Beijing 100038 |
|
|
Abstract Based on practices in decision-making, diverse schools of thought about innovation provide multiple theoretical perspectives, while big data allows the process to be data-driven. Both approaches have advanced the field of evidence-based policy making (EBPM) oriented data analytics. A knowledge graph for science and technology (S&T) decision-making is proposed based on knowledge organization that interrelates three elements for S&T decision-making. These elements include theories in the form of indicators, data as the input, and visualization as the output. The schema of the knowledge graph proposed in this research defines the classes and their attributes in three different layers (indicator, data, and visualization), under which the interrelationship of different elements is formed and inferred to provide the function of adaptive computation for decision-making. The application of the schema in the GII (global innovation index) and MSTI (main science and technology indicators) description demonstrates the validity of the proposed method in the scenario of innovation mapping and evaluation.
|
Received: 14 March 2019
|
|
|
|
1 赵志耘, 张均胜, 姚长青, 等. 面向管理与决策的中国科技创新图谱研究[J]. 情报学报, 2018, 37(8): 774-781. 2 WiseG. Science and technology[J]. Osiris, 1985, 1: 229-246. 3 MahdjoubiD, EngP. The mapping of innovation[EB/OL]. [2019-03-01]. https: //www.ischool.utexas.edu/~darius/papers.htm. 4 SchotJ, Edward SteinmuellerW. Framing innovation policy for transformative change: Innovation policy 3.0[EB/OL]. [2019-03-01]. http: //www.johanschot.com/wordpress/wp-content/uploads/2016/09/Framing-Innovation-Policy-for-Transformative-Change-Innovation-Policy-3.0-2016.pdf. 5 田晨. 大数据背景下循证决策的应用研究[D]. 长沙: 湖南大学, 2016: 23-32. 6 QuinnM. Evidence based or people based policy making?: A view from Wales[J]. Public Policy and Administration, 2002, 17(3): 29-42. 7 赵志耘, 张兆锋, 姚长青, 等. 面向科技创新的决策剧场研究[J]. 中国软科学, 2018(10): 136-141. 8 阚红星, 陈新, 王国强, 等. 一种中医疗效评价指标自动生成方法[J]. 计算机技术与发展, 2013, 23(6): 106-108. 9 金力, 阚红星, 方朝晖, 等. 一种基于演化的糖尿病疗效自适应动态评价模型[J]. 时珍国医国药, 2016, 27(2): 490-492. 10 刘建龙, 杨柳, 刘斌, 等. 适应决策评价的多指标动态主题化服务及示例[J]. 水利信息化, 2015(6): 25-31. 11 LakshmiH, NamithaS, Seemanthini, et al. Risk based access control in cloud computing[C]// Proceedings of the International Conference on Green Computing and Internet of Things. New York: IEEE, 2015: 1501-1505. 12 杨宏宇, 宁宇光. 云平台访问控制自适应风险评估指标权重分配方法[J]. 计算机应用, 2018, 38(6): 1614-1619. 13 DentlerK, TeijeA T, CornetR, et al. Towards the automated calculation of clinical quality indicators[C]// Proceedings of the International Workshop on Knowledge Representation for Health Care. Heidelberg: Springer, 2011: 51-64. 14 DentlerK, ten TeijeA, CornetR, et al. Semantic integration of patient data and quality indicators based on openEHR archetypes[C]// Proceedings of the Process Support and Knowledge Representation in Health Care. Heidelberg: Springer, 2013: 85-97. 15 DentlerK, CornetR, ten TeijeA, et al. The reproducibility of CLIF, a method for clinical quality indicator formalisation[J]. Studies in Health Technology and Informatics, 2012, 180: 113-117. 16 DentlerK, CornetR, ten TeijeA, et al. Influence of data quality on computed Dutch hospital quality indicators: A case study in colorectal cancer surgery[J]. BMC Medical Informatics and Decision Making, 2014, 14: 32. 17 LiuH T, ten TeijeA, DentlerK, et al. Formalization and computation of diabetes quality indicators with patient data from a chinese hospital[C]// Proceedings of the International Workshop on Knowledge Representation for Health Care. Heidelberg: Springer, 2017: 23-35. 18 魏顺平. 在线学习自动评价模式构建与应用研究[J]. 中国远程教育, 2015(3): 38-45, 79. 19 BollackerK, EvansC, ParitoshP, et al. Freebase: A collaboratively created graph database for structuring human knowledge[C]// Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 2008: 1247-1250. 20 刘峤, 李杨, 段宏, 等. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016, 53(3): 582-600. 21 吴飞, 韩亚洪, 李玺, 等. 人工智能中的推理: 进展与挑战[J]. 中国科学基金, 2018, 32(3): 262-265. 22 LeeT W, LewickiM S, GirolamiM, et al. Blind source separation of more sources than mixtures using overcomplete representations[J]. IEEE Signal Processing Letters, 1999, 6(4): 87-90. 23 LuS Y, HsuK H, KuoL J. A semantic service match approach based on WordNet and SWRL rules[C]// Proceedings of the 10th International Conference on e-Business Engineering. Washington DC: IEEE Computer Society, 2013: 419-422. 24 BordesA, UsunierN, GarciaD A, et al. Translating embeddings for modeling multi-relational data[C]// Proceedings of the International Conference on Neural Information Processing Systems. Nevada: Curran Associates Inc, 2013: 2787-2795. 25 SocherR, ChenD, ManningC D, et al. Reasoning with neural tensor networks for knowledge base completion[C]// Proceedings of the International Conference on Neural Information Processing Systems. Nevada: Curran Associates Inc, 2013: 926-934. 26 ToutanovaK, ChenD Q, PantelP, et al. Representing text for joint embedding of text and knowledge bases[C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2015: 21-28. 27 田明, 尤正宏. 知识图谱技术在金融微筹中的应用展望[J]. 知识经济, 2018(14): 49-50. 28 马晨浩. 基于甲状腺知识图谱的自动问答系统的设计与实现[J]. 智能计算机与应用, 2018, 8(3): 102-107. 29 王蕾. 面向医疗健康领域的智能问答系统的设计与实现[D]. 北京: 北京邮电大学, 2018: 23-52. 30 徐增林, 盛泳潘, 贺丽荣, 等. 知识图谱技术综述[J]. 电子科技大学学报, 2016, 45(4): 589-606. 31 武鸿浩. 公安领域中知识图谱的构建与应用研究[J]. 网络安全技术与应用, 2018(8): 93-94,127. 32 漆桂林, 高桓, 吴天星. 知识图谱研究进展[J]. 情报工程, 2017, 3(1): 4-25. 33 DaraioC, LenzeriniM, LeporelliC, et al. Data integration for research and innovation policy: An ontology-based data management approach[J]. Scientometrics, 2016, 106(2): 857-871. 34 崔金栋, 徐宝祥, 韩洁平. 基于Folksonomy和本体建模的碳排放预警指标体系构建[J]. 情报科学, 2013, 31(12): 126-129. 35 Shaban-NejadA, OkhmatovskaiaA, IzadiM T, et al. Phio: A knowledge base for interpretation and calculation of public health indicators[J]. Studies in Health Technology and Informatics, 2013, 192(1-2): 1201-1207. 36 SantosH, DantasV, FurtadoV, et al. From data to city indicators: A knowledge graph for supporting automatic generation of dashboards[C]// Proceedings of the European Semantic Web Conference. Cham: Springer, 2017: 94-108. 37 ZhangY F, GouL, ZhouT S, et al. An ontology-based approach to patient follow-up assessment for continuous and personalized chronic disease management[J]. Journal of Biomedical Informatics, 2017, 72: 45-59. 38 张德政, 谢永红, 李曼, 等. 基于本体的中医知识图谱构建[J]. 情报工程, 2017, 3(1): 35-42. 39 UzlovK, TangL C. Indicator evaluation of regional innovation system according to the cluster approach[J]. SCHOLEDGE International Journal of Business Policy & Governance, 2016, 3(12): 178. 40 KwonS, KimJ, OhD S. Measurement of urban competitiveness based on innovation indicators in six metropolitan cities in Korea[J]. World Technopolis Review, 2012, 1(3): 177-185. 41 KanevaM, UnturaG. Innovation indicators and regional growth in Russia[J]. Economic Change and Restructuring, 2017, 50(2): 133-159. 42 AbelaA. Advanced presentations by design: The new science for seriously influential presentations[EB/OL]. [2019-03-01]. https: //www.smartdatacollective.com/15668/. 43 姚艳, 黄亚桥. 科技评估活动的知识创新内涵分析[J]. 评价与管理, 2008, 6(1): 20-22. |
|
|
|