|
|
Research on Patent Tradability Prediction Based on Weight Balancing Algorithm |
Ran Congjing1, Ding Qunzhe1, Li Wang1, Song Yonghui1, Liu Shuang2 |
1.School of Information Management, Wuhan University, Wuhan 430072 2.Center for Scientific Research and Development in Higher Education Institutes, Ministry of Education, Beijing 100080 |
|
|
Abstract As a crucial link between innovation and the realization of market value, patent transactions play a significant role in supporting national strategic goals, driving technological progress, and facilitating technology transfer and collaboration between enterprises and research institutions. Therefore, considering the importance of identifying patents with high market potential to foster innovation and collaboration, predicting patent tradability is crucial. To address this, this paper proposes a patent tradability prediction method based on a weighted balancing algorithm. To support the prediction of patent tradability, an initial dataset was constructed by integrating data from the incoPat patent database and China Patent Information Service Platform. The initial patent transaction dataset was further refined based on patent transfer records, transfer and assignee addresses, and stakeholder information, using a series of rules and algorithms to construct the final patent transaction dataset. Using this dataset, patent tradability prediction is framed as a supervised binary classification task. The input variables include the multidimensional technical features of the patents prior to the transaction, while the target variable indicates whether the patent is transacted before its expiration. Using this methodology, the proposed patent tradability prediction model based on the weighted balancing algorithm outperformed baseline models in terms of overall performance, and its effectiveness was validated through empirical results. In addition, model interpretability techniques revealed that key technical features, such as applicant country, applicant type, number of family patents, and number of family countries, significantly influence patent transactions. Despite these advancements, predicting patent transactions remains challenging. Future research could explore the incorporation of multidimensional features, such as patent text and images, to further enhance the predictive performance of the model.
|
Received: 27 September 2024
|
|
|
|
1 Liefner I, Kroll H, Peighambari A. Research-driven or party-promoted? Factors affecting patent applications of private small and medium-sized enterprises in China’s Pearl River Delta[J]. Science and Public Policy, 2016, 43(6): 849-858. 2 吴小康, 铁瑛. 知识产品交易、边界障碍与效率损失评估[J]. 世界经济, 2023, 46(10): 170-195. 3 Wu X K, Yang J J. High-speed railway and patent trade in China[J]. Economic Modelling, 2023, 123: 106276. 4 De Marco A, Scellato G, Ughetto E, et al. Global markets for technology: evidence from patent transactions[J]. Research Policy, 2017, 46(9): 1644-1654. 5 Kim M, Geum Y. Predicting patent transactions using patent-based machine learning techniques[J]. IEEE Access, 2020, 8: 188833-188843. 6 钱坤, 张晓, 黄忠全. 交易情景下专利价值影响因素分析[J]. 科学学研究, 2020, 38(9): 1608-1620. 7 Shen H J, Huang C, Mao H, et al. To license or sell: a study on the patent transaction modes in China[R]. Hong Kong: HKUST IEMS Working Paper Series, 2018: No.2018-51. 8 宋爽, 陈向东. 区域技术差异对专利价值的影响[J]. 科研管理, 2016, 37(9): 68-77. 9 Squicciarini M, Dernis H, Criscuolo C. Measuring patent quality: indicators of technological and economic value[R]// OECD Science, Technology and Industry Working Papers. Paris: OECD Publishing, 2013: No.2013/03. 10 Bergman K, Graff G D. The global stem cell patent landscape: implications for efficient technology transfer and commercial development[J]. Nature Biotechnology, 2007, 25(4): 419-424. 11 何喜军, 董艳波, 武玉英, 等. 基于ERGM的科技主体间专利技术交易机会实证研究[J]. 中国软科学, 2018(3): 184-192. 12 He X J, Meng X, Dong Y B, et al. Demand identification model of potential technology based on SAO structure semantic analysis: the case of new energy and energy saving fields[J]. Technology in Society, 2019, 58: 101116. 13 Wang Q, Du W, Ma J, et al. Recommendation mechanism for patent trading empowered by heterogeneous information networks[J]. International Journal of Electronic Commerce, 2019, 23(2): 147-178. 14 何喜军, 石安杰, 吴爽爽, 等. 基于知识图谱与强化学习的专利交易推荐研究[J]. 系统工程理论与实践, 2024, 44(10): 3330-3345. 15 Zhang L S, Kang Z, Sun X X, et al. KCRec: knowledge-aware representation graph convolutional network for recommendation[J]. Knowledge-Based Systems, 2021, 230: 107399. 16 Guo Q Y, Zhuang F Z, Qin C, et al. A survey on knowledge graph-based recommender systems[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(8): 3549-3568. 17 Wang Q, Mao Z D, Wang B, et al. Knowledge graph embedding: a survey of approaches and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(12): 2724-2743. 18 Tang X L, Wang T Y, Yang H Z, et al. AKUPM: attention-enhanced knowledge-aware user preference model for recommendation[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM Press, 2019: 1891-1899. 19 Han E J, Sohn S Y. Patent valuation based on text mining and survival analysis[J]. The Journal of Technology Transfer, 2015, 40(5): 821-839. 20 冉从敬, 李旺, 胡启彪, 等. 基于机器学习的成本法在专利价值评估中的应用研究——以“新能源汽车”为例[J]. 现代情报, 2024, 44(5): 140-152. 21 曾凯霖, 唐婷, 吴泽斌. 专利价格评估指标体系与预测模型构建[J]. 科技管理研究, 2023, 43(16): 63-69. 22 王肃. 专利交易概念探析[J]. 河南科技学院学报, 2012(1): 34-36. 23 胡泽文, 周西姬, 任萍. 基于扎根理论的高价值专利评估与识别研究综述[J]. 情报科学, 2022, 40(2): 183-192. 24 Zhang Y, Qian Y, Huang Y, et al. An entropy-based indicator system for measuring the potential of patents in technological innovation: rejecting moderation[J]. Scientometrics, 2017, 111(3): 1925-1946. 25 Arora A, Belenzon S, Suh J. Science and the market for technology[J]. Management Science, 2022, 68(10): 7176-7201. 26 胡元佳, 卞鹰, 王一涛. 专利价值的理论探讨[J]. 科技管理研究, 2008, 28(5): 246-249. 27 国家市场监督管理总局, 国家标准化管理委员会. 专利评估指引: GB/T 42748—2023[S/OL]. (2023-08-06) [2023-09-27]. http://c.gb688.cn/bzgk/gb/showGb?type=online&hcno=21AB9B32C8B01C3849AF785EBEFC357B. 28 《专利评估指引》国家标准正式发布[EB/OL]. (2023-08-31) [2023-09-27]. https://mp.weixin.qq.com/s/SCJdRQyNVk2H6qYA5mPyjA. 29 Lee S, Kang S, Park Y, et al. Technology roadmapping for R&D planning: the case of the Korean parts and materials industry[J]. Technovation, 2007, 27(8): 433-445. 30 刘运华, 刘兴华, 李晶. 建立有利于科技成果转化的专利质量评价体系研究[J]. 科学管理研究, 2022, 40(2): 65-72. 31 Ko N, Jeong B, Seo W, et al. A transferability evaluation model for intellectual property[J]. Computers & Industrial Engineering, 2019, 131: 344-355. 32 Gao L D, Porter A L, Wang J, et al. Technology life cycle analysis method based on patent documents[J]. Technological Forecasting and Social Change, 2013, 80(3): 398-407. 33 刘澄, 雷秋原, 张楠, 等. 基于BP神经网络的专利价值评估方法及其应用研究[J]. 情报杂志, 2021, 40(12): 195-202. 34 刘妍. 专利价值评估研究综述与趋势展望[J]. 图书情报工作, 2022, 66(15): 127-139. 35 Lundberg S M, Erion G, Chen H, et al. From local explanations to global understanding with explainable AI for trees[J]. Nature Machine Intelligence, 2020, 2(1): 56-67. |
|
|
|