|
|
|
| Sources of Basic Research for Disruptive Technologies: Individual Innovation Subject Perspective |
| He Yubing, He Li, Xu Meijuan |
| School of Economics and Management, Fuzhou University, Fuzhou 350108 |
|
|
|
|
Abstract Disruptive technology, which is typically afforded by major breakthroughs in basic sciences, has been identified as a key factor that promotes scientific and technological revolution as well as industrial change. Thus, the basic research origins of disruptive technology must be examined to identify the core foundational disciplines and forecast future technological trajectories. In this context, individual-level innovation subjects is vital in bridging between basic research and disruptive technologies. Considering China’s graphene field as an example, this study investigates the knowledge linkage and group-knowledge heterogeneity between basic research and disruptive technologies from the perspective of individual innovation subjects. First, relevant innovation subjects are identified by screening disruptive technologies and relevant data from scientific papers are obtained. Second, topics are identified using the author-topic model, and the knowledge association between basic research and disruptive technologies is analyzed based on topic similarity. Finally, individual innovation subject groups are classified based on the number of disruptive technology inventions, and the research-interest diversity of low- and high-output innovation subject groups is analyzed using the topic-diversity index, while the author-topic association knowledge network is constructed to examine the group heterogeneity of basic research and disruptive technologies. The results indicate that scientific and technological topics in China’s graphene field have transitioned from a relatively superficial to a more profound development stage. A discernible knowledge link exists between basic research and disruptive technologies in individual innovation subjects, which has progressively strengthened over time. Individual innovation subjects who have invented a varying number of disruptive patents exhibit different topic diversities and extents of topic interconnectedness. Notably, highly productive inventors have gradually expanded their research depth while maintaining their research diversity. Thus, a distinctive research system characterized by a “small-world” effect within the group was developed. The findings of this study provide intelligence support for the identification, cultivation, and development of disruptive technologies as well as for the promotion of disruptive technology-oriented basic research.
|
|
Received: 17 January 2025
|
|
|
|
1 Zhou Y, Yan L Z, Liu X. A quantitative study of disruptive technology policy texts: an example of China’s artificial intelligence policy[J]. Journal of Data and Information Science, 2024, 9(3): 155-180. 2 王康, 陈悦, 宋超, 等. 颠覆性技术: 概念辨析与特征分析[J]. 科学学研究, 2022, 40(11): 1937-1946. 3 徐晓丹, 柳卸林. 大企业为什么要重视基础研究?[J]. 科学学与科学技术管理, 2020, 41(9): 3-19. 4 董坤, 许海云, 罗瑞, 等. 科学与技术的关系分析研究综述[J]. 情报学报, 2018, 37(6): 642-652. 5 Schoenmakers W, Duysters G. The technological origins of radical inventions[J]. Research Policy, 2010, 39(8): 1051-1059. 6 刘小玲, 谭宗颖, 张超星. 国内外“科学-技术关系”研究方法述评——聚焦文献计量方法[J]. 图书情报工作, 2015, 59(13): 142-148. 7 V.布什. 科学——没有止境的前沿[M]. 范岱年, 解道华, 等译. 北京: 商务印书馆, 2004. 8 Carpenter M P, Narin F. Validation study: patent citations as indicators of science and foreign dependence[J]. World Patent Information, 1983, 5(3): 180-185. 9 Kwon S, Liu X Y, Porter A L, et al. Research addressing emerging technological ideas has greater scientific impact[J]. Research Policy, 2019, 48(9): 103834. 10 Meyer M. Are patenting scientists the better scholars? An exploratory comparison of inventor-authors with their non-inventing peers in nano-science and technology[J]. Research Policy, 2006, 35(10): 1646-1662. 11 Zhang G J, Liu L N, Wei F F. Key nodes mining in the inventor–author knowledge diffusion network[J]. Scientometrics, 2019, 118(3): 721-735. 12 陈稳, 陈伟. 科学与技术对比视角下的前沿主题识别与演化分析[J]. 情报杂志, 2022, 41(1): 67-73, 163. 13 Xu H Y, Yue Z H, Pang H S, et al. Integrative model for discovering linked topics in science and technology[J]. Journal of Informetrics, 2022, 16(2): 101265. 14 Ke Q. Technological impact of biomedical research: the role of basicness and novelty[J]. Research Policy, 2020, 49(7): 104071. 15 Leten B, Kelchtermans S, Belderbos R. How does basic research improve innovation performance in the world’s major pharmaceutical firms?[J]. Industry and Innovation, 2022, 29(3): 396-424. 16 张守明, 张斌, 张笔峰, 等. 颠覆性技术的特征与预见方法[J]. 科技导报, 2019, 37(19): 19-25. 17 Leung T Y, Sharma P. Differences in the impact of R&D intensity and R&D internationalization on firm performance-mediating role of innovation performance[J]. Journal of Business Research, 2021, 131: 81-91. 18 曹阳春, 张静, 张光宇, 等. 颠覆性技术多元化投入机制构建思路的案例研究[J]. 中国科技论坛, 2023(3): 37-48. 19 Cao Q W, Li Y, Peng H T. From university basic research to firm innovation: diffusion mechanism and boundary conditions under a U-shaped relationship[J]. Technovation, 2023, 123: 102718. 20 王辉, 冯峥, 袁礼, 等. 公共科研机构绿色研发介入与企业绿色创新——基于环境外部性视角[J]. 中国工业经济, 2024(9): 81-99. 21 Ceccagnoli M, Lee Y N, Walsh J P. Reaching beyond low-hanging fruit: Basic research and innovativeness[J]. Research Policy, 2024, 53(1): 104912. 22 滕子优, 朱雪忠, 胡成, 等. 创新主体在城市群知识网络中的角色——基于科学与技术关联视角[J]. 科学学研究, 2024, 42(6): 1288-1299. 23 Colen L, Belderbos R, Kelchtermans S, et al. Reaching for the stars: when does basic research collaboration between firms and academic star scientists benefit firm invention performance?[J]. Journal of Product Innovation Management, 2022, 39(2): 222-264. 24 唐旭丽, 李信. 科研团队多样性对学术颠覆性创新的影响研究——以人工智能领域为例[J]. 情报学报, 2023, 42(1): 43-58. 25 Bu Y, Ding Y, Liang X K, et al. Understanding persistent scientific collaboration[J]. Journal of the Association for Information Science and Technology, 2018, 69(3): 438-448. 26 Winnink J J, Tijssen R J W. R&D dynamics and scientific breakthroughs in HIV/AIDS drugs development: the case of Integrase Inhibitors[J]. Scientometrics, 2014, 101(1): 1-16. 27 Audia P G, Goncalo J A. Past success and creativity over time: a study of inventors in the hard disk drive industry[J]. Management Science, 2007, 53(1): 1-15. 28 Funk R J, Owen-Smith J. A dynamic network measure of technological change[J]. Management Science, 2017, 63(3): 791-817. 29 Della Malva A, Kelchtermans S, Leten B, et al. Basic science as a prescription for breakthrough inventions in the pharmaceutical industry[J]. The Journal of Technology Transfer, 2015, 40(4): 670-695. 30 Meyer M. Does science push technology? Patents citing scientific literature[J]. Research Policy, 2000, 29(3): 409-434. 31 Carpenter M P, Cooper M, Narin F. Linkage between basic research literature and patents[J]. Research Management, 1980, 23(2): 30-35. 32 Qu Z, Zhang S S. References to literature from the business sector in patent documents: a case study of charging technologies for electric vehicles[J]. Scientometrics, 2020, 124(2): 867-886. 33 刘佳, 钟永恒, 赵展一, 等. 基础研究对中国上市公司技术创新的作用研究[J]. 中国科技论坛, 2024(4): 33-42, 73. 34 Bassecoulard E, Zitt M. Patents and publications[M]// Handbook of Quantitative Science and Technology Research. Dordrecht: Spring, 2004: 665-694. 35 Xu H Y, Winnink J, Yue Z H, et al. Topic-linked innovation paths in science and technology[J]. Journal of Informetrics, 2020, 14(2): 101014. 36 Chen X, Ye P F, Huang L, et al. Exploring science-technology linkages: a deep learning-empowered solution[J]. Information Processing & Management, 2023, 60(2): 103255. 37 Gittelman M, Kogut B. Does good science lead to valuable knowledge? Biotechnology firms and the evolutionary logic of citation patterns[J]. Management Science, 2003, 49(4): 366-382. 38 Breschi S, Catalini C. Tracing the links between science and technology: an exploratory analysis of scientists’ and inventors’ networks[J]. Research Policy, 2010, 39(1): 14-26. 39 Iwasaki A. Why we need to increase diversity in the immunology research community[J]. Nature Immunology, 2019, 20(9): 1085-1088. 40 Xu S, Li L, An X. Do academic inventors have diverse interests?[J]. Scientometrics, 2023, 128(2): 1023-1053. 41 Ren H, Gray B, Harrison D A. Triggering faultline effects in teams: the importance of bridging friendship ties and breaching animosity ties[J]. Organization Science, 2015, 26(2): 390-404. 42 何劲, 关鹏, 王曰芬. 作者-主题关联的学科知识网络构建与演化分析[J]. 情报科学, 2019, 37(1): 56-62, 67. 43 Mansfield E. Academic research underlying industrial innovations: sources, characteristics, and financing[J]. The Review of Economics and Statistics, 1995, 77(1): 55-65. 44 王诗炜, 陈春. 基于科学论文和技术专利关联关系识别潜在知识发现方法研究综述[J]. 数据分析与知识发现, 2023, 7(7): 18-31. 45 Alvial-Palavicino C, Konrad K. The rise of graphene expectations: anticipatory practices in emergent nanotechnologies[J]. Futures, 2019, 109: 192-202. 46 Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. 47 Wagner S, Wakeman S. What do patent-based measures tell us about product commercialization? Evidence from the pharmaceutical industry[J]. Research Policy, 2016, 45(5): 1091-1102. 48 Rosen-Zvi M, Chemudugunta C, Griffiths T, et al. Learning author-topic models from text corpora[J]. ACM Transactions on Information Systems, 2010, 28(1): Article No.4. 49 Teh Y W, Jordan M I, Beal M J, et al. Hierarchical Dirichlet processes[J]. Journal of the American Statistical Association, 2006, 101(476): 1566-1581. 50 徐红姣, 曾文, 张运良. 基于Word2Vec的论文和专利主题关联演化分析方法研究[J]. 情报杂志, 2018, 37(12): 36-42. 51 Leydesdorff L, Wagner C S, Bornmann L. Interdisciplinarity as diversity in citation patterns among journals: Rao-Stirling diversity, relative variety, and the Gini coefficient[J]. Journal of Informetrics, 2019, 13(1): 255-269. 52 张彪, 董坤, 田常伟, 等. “双链”融合视角下关键核心技术分析框架及应用研究——以山东省区块链产业为例[J]. 情报理论与实践, 2023, 46(11): 133-142. 53 李莉, 彭现科, 张艳芳, 等. 中国石墨烯产业创新政策分析及建议[J]. 技术经济, 2023, 42(11): 37-46. 54 Stokes D E. Pasteur’s quadrant: basic science and technological innovation[M]. Washington: Brookings Institution Press, 1997. 55 Liu J W, Gong X Y, Xu S, et al. Understanding the relationship between team diversity and the innovative performance in research teams using decision tree algorithms: evidence from artificial intelligence[J]. Scientometrics, 2024, 129(12): 7805-7831. 56 曾德明, 赵文静, 文金艳. 外部科学知识获取与企业技术创新——桥接科学家的调节作用[J]. 中国科技论坛, 2020(5): 109-117. 57 Wu L F, Wang D S, Evans J A. Large teams develop and small teams disrupt science and technology[J]. Nature, 2019, 566(7744): 378-382. |
|
|
|