|
|
Quantifying Basic Research Contribution to Biomedical Firms' Scientific Output: A Perspective on Individual Publication Characteristics |
Min Chao1, Lin Haotian2, Gong Chenjiao1, Ke Qing3, Gao Jiping4, Li Minglu5 |
1.School of Information Management, Nanjing University, Nanjing 210023 2.The Literature and Information Center, Fudan University, Shanghai 200433 3.School of Data Science, City University of Hong Kong, Hong Kong 999077 4.Institute of Scientific and Technical Information of China, Beijing 100038 5.Bureau of Policy, National Natural Science Foudation of China, Beijing 100085 |
|
|
Abstract As the foundation of core technologies, basic research has a significant impact on the development of high-tech companies. Therefore, basic research should be accurately identified and measured for its impact and mechanism to be explored. This study uses the scientometric method based on the “Level Score” index, a quantitative index for measuring the basic level of a research paper, to quantify the basic research of firms in the biomedical field, which is a key development industry in China and abroad, thereby investigating the dependence between output and basic research. The results of this study show that: (1) Most biomedical firms need to conduct basic research to sustain their development, and a certain scale and strength are required to conduct both basic and applied research. Large biomedical firms have a more intensive distribution of average basic level papers, whereas smaller firms tend to publish more basic research papers. (2) Basic research type references are the main knowledge base of the papers published by biomedical firms which also rely on some applied research references, indicating that the research activities of biomedical firms are highly dependent on basic research. (3) The basic output type of biomedical firms depends on basic knowledge input and is thus less difficult to obtain applied output type from basic input than to generate basic type output from applied type input.
|
Received: 03 December 2022
|
|
|
|
1 Mansfield E. Basic research and productivity increase in manufacturing[J]. The American Economic Review, 1980, 70(5): 863-873. 2 赵志耘, 雷孝平. 我国生物科技领域技术创新与基础研究关联分析——从专利引文分析的角度[J]. 情报学报, 2012, 31(12): 1283-1289. 3 Ke Q. Identifying translational science through embeddings of controlled vocabularies[J]. Journal of the American Medical Informatics Association, 2019, 26(6): 516-523. 4 OECD. Frascati manual 2015: guidelines for collecting and reporting data on research and experimental development[M]. Paris: OECD Publishing, 2016. 5 柳卸林, 何郁冰. 基础研究是中国产业核心技术创新的源泉[J]. 中国软科学, 2011(4): 104-117. 6 陈劲, 宋建元, 葛朝阳, 等. 试论基础研究及其原始性创新[J]. 科学学研究, 2004(3): 317-321. 7 Bush V. Science, the endless frontier[M]. Washington: United States Government Printing Office, 1945. 8 徐晓丹, 柳卸林. 大企业为什么要重视基础研究?[J]. 科学学与科学技术管理, 2020, 41(9): 3-19. 9 国家统计局. 2022年全国科技经费投入统计公报[EB/OL]. (2023-09-18). https://www.stats.gov.cn/sj/zxfb/202309/t20230918_1942920.html. 10 中华人民共和国国家发展和改革委员会. “十四五”规划《纲要》章节指标之1|基础研究经费投入占研发经费投入比重[EB/OL]. (2021-12-25). https://www.ndrc.gov.cn/fggz/fzzlgh/gjfzgh/202112/t20211225_1309668.html. 11 王海燕, 徐君言, 李玲娟. 基础研究经费投入现状与统计口径研究[J]. 科学学研究, 2023, 41(10): 1812-1821, 1832. 12 张铭洺, 茅宁莹. 基于动态TOPSIS法的中、美、日医药创新能力与潜力评价研究[J]. 科技管理研究, 2020, 40(21): 23-30. 13 李菲, 龙耀辉, 赵劲松, 等. 我国生物医药产业现状及区域化发展战略[J]. 中国生物工程杂志, 2020, 40(8): 97-101. 14 方勇, 吴素珍, 刘忠华. 研发模式、企业基础研究与产业发展[J]. 科技管理研究, 2020, 40(20): 1-7. 15 刘骐源, 谢富纪. 应用导向的企业基础研究对企业创新效率的影响——基于工业企业数据的实证研究[J]. 科技管理研究, 2019, 39(8): 165-171. 16 李培楠, 赵兰香, 万劲波, 等. 研发投入对企业基础研究和产业发展的阶段影响[J]. 科学学研究, 2019, 37(1): 36-44. 17 左霖锋, 何郁冰. 基础研究投入对中国企业创新绩效的影响研究——基于2009—2017年面板数据的实证分析[J]. 海峡科学, 2019(3): 47-53. 18 高丽娜, 蒋伏心. 基础研究强度与区域创新绩效——政府支持与人力资本结构的调节效应[J]. 科技进步与对策, 2021, 38(20): 47-53. 19 卫平, 杨宏呈, 蔡宇飞. 基础研究与企业技术绩效——来自我国大中型工业企业的经验证据[J]. 中国软科学, 2013(2): 123-133. 20 李蕾蕾, 黎艳, 齐丹丹. 基础研究是否有助于促进技术进步?——基于技术差距与技能结构的视角[J]. 科学学研究, 2018, 36(1): 37-48. 21 陈钰芬, 黄娟, 王洪刊. 不同类型研发活动如何影响TFP?——基于2000—2010年我国省际面板数据的实证[J]. 科学学研究, 2013, 31(10): 1512-1521. 22 Toole A A. The impact of public basic research on industrial innovation: evidence from the pharmaceutical industry[J]. Research Policy, 2012, 41(1): 1-12. 23 孙早, 许薛璐. 前沿技术差距与科学研究的创新效应——基础研究与应用研究谁扮演了更重要的角色[J]. 中国工业经济, 2017(3): 5-23. 24 胡绪华, 吕程扬, 丁绪辉. 基础研究与应用研究对地区经济高质量发展的异质性作用——基于“中等收入陷阱风险” 视角[J]. 科技进步与对策, 2022, 39(1): 60-68. 25 王芳, 赵兰香, 戴小勇. 中国企业基础研究偏好异质性的影响因素分析[J]. 科研管理, 2021, 42(3): 12-22. 26 Narin F, Pinski G, Gee H H. Structure of the biomedical literature[J]. Journal of the American Society for Information Science, 1976, 27(1): 25-45. 27 Della Malva A, Kelchtermans S, Leten B, et al. Basic science as a prescription for breakthrough inventions in the pharmaceutical industry[J]. The Journal of Technology Transfer, 2015, 40(4): 670-695. 28 Belderbos R, Leten B, Kelchtermans S. Performing and exploiting basic research in the world’s major pharmaceutical firms[R]. KU Leuven, 2010: MSI Research Paper 1003. 29 Weber G M. Identifying translational science within the triangle of biomedicine[J]. Journal of Translational Medicine, 2013, 11: 126. 30 Carpenter M P, Narin F, Woolf P. Citation rates to technologically important patents[J]. World Patent Information, 1981, 3(4): 160-163. 31 张雪, 张志强, 陈秀娟, 等. 合成生物学领域的基础研究与技术创新关联分析[J]. 情报学报, 2020, 39(3): 231-242. 32 蔡勇峰, 李显君, 孟东晖. 基础研究对技术创新的作用机理——来自动力电池的实证[J]. 科研管理, 2019, 40(6): 65-76. 33 张龙鹏, 邓昕. 基础研究发展与企业技术创新——基于国家重点实验室建设的视角[J]. 南方经济, 2021(3): 73-88. 34 蒋欣娟, 吴福象, 丛海彬. 异质性研发, 知识溢出与企业创新产出——基于创新链视角的实证分析[J]. 科技进步与对策, 2020, 37(24): 80-89. 35 Salter A J, Martin B R. The economic benefits of publicly funded basic research: a critical review[J]. Research Policy, 2001, 30(3): 509-532. 36 Rotolo D, Camerani R, Grassano N, et al. Why do firms publish? A systematic literature review and a conceptual framework[J]. Research Policy, 2022, 51(10): 104606. 37 Lim K. The relationship between research and innovation in the semiconductor and pharmaceutical industries (1981-1997)[J]. Research Policy, 2004, 33(2): 287-321. 38 李向阳, 刘小平. 我国医药产业技术创新与基础研究关系的专利计量分析[J]. 现代情报, 2015, 35(12): 111-118. 39 Kumar P, Zaheer A. Ego-network stability and innovation in alliances[J]. Academy of Management Journal, 2019, 62(3): 691-716. 40 Tang J, Qu M, Wang M Z, et al. LINE: large-scale information network embedding[C]// Proceedings of the 24th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2015: 1067-1077. |
|
|
|