|
|
Topic Transition Paths and Risk Assessment of Online Public Opinion in Public Emergencies |
Zhou Wei1,2, An Lu1,2,3, Han Ruilian2 |
1.Center for Studies of Information Resources, Wuhan University, Wuhan 430072 2.School of Information Management, Wuhan University, Wuhan 430072 3.Institute of Data Intelligence, Wuhan University, Wuhan 430072 |
|
|
Abstract Exploring the topic transition nodes of online public opinion in public emergencies and conducting multi-phase risk assessments are of great significance for accurately addressing crises of online public opinion in these cases and providing dynamic guidance strategies. This paper proposes a method for identifying topic transition paths and conducting a multiphase risk assessment of online public opinion in emergency situations. First, a temporal semantic co-occurrence network was constructed by integrating the RoBERTa model, and network community topics were discovered using the Louvain-CFDP algorithm. Second, a model for detecting topic transitions was developed to generate topic transition paths and identify and analyze multiple types of transition paths and risk fluctuation characteristics. Taking the “Japanese nuclear contaminated water discharge into the sea” incident as an example, the empirical analysis identified three types of transition paths: event development, emotional aggregation, and derivative event types. The characteristics, risk features, and differences between the three types of paths were analyzed. The results show that the proposed method for topic transition paths and risk assessment can comprehensively demonstrate the topic transition of emergencies on social media, provide guidance and references for government departments to quickly identify high-risk topics, and formulate precise and effective public opinion risk guidance schemes.
|
Received: 01 April 2024
|
|
|
|
1 李玥琪, 王晰巍, 王楠阿雪, 等. 突发事件下社交媒体网络舆情风险识别及预警模型研究[J]. 情报学报, 2022(10): 1085-1099. 2 曾子明, 孙守强, 李青青. 基于融合策略的突发公共卫生事件网络舆情多模态负面情感识别[J]. 情报学报, 2023, 42(5): 611-622. 3 Xiao Q, Li Y P, Luo F, et al. Analysis and assessment of risks to public safety from unmanned aerial vehicles using fault tree analysis and Bayesian network[J]. Technology in Society, 2023, 73: 102229. 4 Jiang Y C, Liang R C, Zhang J, et al. Network public opinion detection during the coronavirus pandemic: a short-text relational topic model[J]. ACM Transactions on Knowledge Discovery from Data, 2022, 16(3): Article No.52. 5 杨欣谊, 王伟, 朱恒民. 基于时序共词网络的社交平台话题检测与演化研究[J]. 情报学报, 2023, 42(5): 585-597. 6 Mullick A, Bhandari A, Niranjan A, et al. Drift in online social media[C]// Proceedings of the 9th IEEE Annual Information Technology, Electronics and Mobile Communication Conference. Piscataway: IEEE, 2018: 302-307. 7 许烨婧, 黄微, 郭苏琳, 等. 多媒体网络舆情话题衍进追踪态势及机理解析[J]. 情报理论与实践, 2020, 43(12): 156-162. 8 Sun Y C, Loparo K. Topic shift detection in online discussions using structural context[C]// Proceedings of the 43rd IEEE Annual Computer Software and Applications Conference. Piscataway: IEEE, 2019: 948-949. 9 朱恒民, 钱莉, 杨欣谊, 等. 网络舆情话题漂移路径研究[J]. 情报杂志, 2022, 41(6): 108-113, 119. 10 Topal K, Koyuturk M, Ozsoyoglu G. Emotion-and area-driven topic shift analysis in social media discussions[C]// Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. Piscataway: IEEE, 2016: 510-518. 11 陈虹枢, 宋亚慧, 金茜茜, 等. 动态主题网络视角下的突破性创新主题识别: 以区块链领域为例[J]. 图书情报工作, 2022, 66(10): 45-58. 12 黄畅, 郭文忠, 郭昆. 基于双向量模型的自适应微博话题追踪方法[J]. 小型微型计算机系统, 2019, 40(6): 1203-1209. 13 Chen B, Ding Y, Ma F. Mapping the semantic word shifts in topics in the field of information retrieval[C]// Proceedings of the 16th International Conference on Scientometrics and Informetrics. Cham: Springer, 2017: 1335-1341. 14 Chen B T, Ding Y, Ma F C. Semantic word shifts in a scientific domain[J]. Scientometrics, 2018, 117(1): 211-226. 15 徐璐璐, 杨嘉乐, 康乐乐. 医学信息领域人工智能技术的主题漂移与未来展望——基于JCR 26本医学信息期刊文本的命名实体识别[J]. 现代情报, 2022, 42(10): 163-176. 16 谢丹琳, 胡锡晟, 杨卫书. 企业网络舆情事件可视化分析及危机公关策略研究——以“海天酱油事件”为例[J]. 科技情报研究, 2024, 6(1): 90-101. 17 李桂华, 张秋东, 林思妍. 社会诉求数据在“情景-应对”型应急决策中的应用研究[J]. 信息资源管理学报, 2023, 13(5): 79-91. 18 张军玲. 我国网络舆情信息挖掘研究综述[J]. 情报科学, 2016, 34(11): 167-172. 19 邓建高, 吴灵铭, 齐佳音, 等. 基于信息关联的负面网络舆情风险分级与预测研究[J]. 情报科学, 2022, 40(1): 38-43. 20 吴琦, 李阳. 融入领域风险词典的社会安全事件网络舆情风险评估研究[J]. 情报理论与实践, 2024, 47(6): 175-183. 21 Huang X, Jin H D, Zhang Y. Risk assessment of earthquake network public opinion based on global search BP neural network[J]. PLoS One, 2019, 14(3): e0212839. 22 田世海, 于越, 邓舒予. 突发公共事件多情景下的网络舆情危机预警研究[J]. 情报理论与实践, 2023, 46(1): 132-140. 23 Cao L X, Wei G, Su J. Public opinion spread risk assessment model on third-party payment rough network[J]. Applied Soft Computing, 2020, 95: 106532. 24 Peng B H, Zheng C Y, Wei G, et al. Risk assessment method on haze networks public opinion based on intuitionistic fuzzy choquet integral[J]. International Journal of Fuzzy Systems, 2022, 24(6): 2858-2872. 25 何丽, 柳岚清, 刘杰, 等. 融合问题分类与RoBERTa的答案选择方法[J]. 数据分析与知识发现, 2024, 8(8/9): 157-167. 26 程秀峰, 邹晶晶, 叶光辉, 等. 融合word2vec的半积累引用共词网络的领域主题演化研究[J]. 情报学报, 2023, 42(7): 801-815. 27 Huang W C, Li L Q, Liu H Y, et al. Defense resource allocation in road dangerous goods transportation network: a Self-Contained Girvan-Newman Algorithm and Mean Variance Model combined approach[J]. Reliability Engineering & System Safety, 2021, 215: 107899. 28 Guan J Y, Li S, He X X, et al. Clustering by fast detection of main density peaks within a peak digraph[J]. Information Sciences, 2023, 628: 504-521. 29 王艺霖, 肖媛媛, 左鹏飞, 等. 基于改进聚类算法的交通事故多发点识别方法[J]. 计算机应用研究, 2023, 40(10): 2993-2999. 30 Fienberg S E. An iterative procedure for estimation in contingency tables[J]. The Annals of Mathematical Statistics, 1970, 41(3): 907-917. 31 陈苗苗, 安璐. 突发传染病情境下社会化问答平台用户角色形成及转变——以知乎平台为例[J]. 图书情报工作, 2022, 66(12): 68-81. 32 郭宇, 张传洋, 张海涛, 等. 危机管理视角下突发事件舆情主题演化与治理分析[J]. 图书情报工作, 2022, 66(8): 113-121. 33 康瑞, 牟睿聆, 李凌海, 等. 航空器场面滑行关键路径识别与抗毁性研究[J]. 重庆理工大学学报(自然科学), 2024, 38(2): 181-188. 责任编辑 魏瑞斌) |
|
|
|