|
|
Burst Term Detection Study Based on Multi-Indicators |
Peng Guochao, Kong Yongxin, Wang Yuwen |
School of Information Management, Sun Yat-sen University, Guangzhou 510006 |
|
|
Abstract Since burst terms are forward-looking and informative, burst term detection (BTD) helps to predict research fronts and hotspots in certain subject areas. In this study, we build a multi-indicator system for BTD, including burst indicators (“random,” “growth,” and “burst”), knowledge fusion indicators, and influence indicators. Based on “random” and “growth,” three categories of burst terms are clustered by K-means, namely, emergence terms, strong burst terms, and weak burst terms. Combining the burst indicators, knowledge fusion indicators, and influence indicators, the burst terms with different developmental statuses were identified. The results show that emergence terms with a high burst can gain more attention and have more influence at the initial stage. Burst terms with a high degree of knowledge fusion indicate that the breadth and intensity of fusion are higher, and they are more likely to develop into research hotspots in the future. Finally, burst terms with high influence indicates that they receive wide attention and have a certain research base and have a higher probability to become a research frontier in the future.
|
Received: 26 July 2021
|
|
|
|
1 刘敏娟, 张学福, 颜蕴. 基于核心词、突变词与新生词的学科主题演化方法研究[J]. 情报杂志, 2016, 35(12): 175-180. 2 奉国和, 武佳佳, 莫幸清. 多测度的突发词探测及验证研究[J]. 图书情报工作, 2020, 64(11): 67-76. 3 隗玲, 许海云, 郭婷, 等. 基于弱共现和突发监测的情报学学科研究主题及交叉性分析[J]. 图书情报工作, 2015, 59(21): 105-114. 4 郑乐丹. 基于突发检测的我国数字图书馆研究前沿及其演进分析[J]. 图书馆论坛, 2013, 33(1): 47-51. 5 Kleinberg J. Bursty and hierarchical structure in streams[J]. Data Mining and Knowledge Discovery, 2003, 7(4): 373-397. 6 张金柱, 刘菁婕, 吕品. 基于社团结构动态演化的主题突变实时监测研究[J]. 情报理论与实践, 2019, 42(7): 151-157. 7 郑乐丹. 基于突变检测的学科领域新兴研究趋势探测分析[J]. 情报杂志, 2012, 31(9): 50-53. 8 王梦婷. 基于突变检测的主题突变分析研究[J]. 情报科学, 2016, 34(12): 36-39. 9 Tattershall E, Nenadic G, Stevens R D. Detecting bursty terms in computer science research[J]. Scientometrics, 2020, 122(1): 681-699. 10 Wu Q Q, Zhang H B, Lan J. K-state automaton burst detection model based on KOS: emerging trends in cancer field[J]. Journal of Information Science, 2015, 41(1): 16-26. 11 Lee S, Park Y, Yoon W C. Burst analysis for automatic concept map creation with a single document[J]. Expert Systems with Applications, 2015, 42(22): 8817-8829. 12 李勇, 安新颖, 赵迎光, 等. 结合知识组织体系的突发主题监测研究[J]. 情报理论与实践, 2013, 36(5): 120-123, 128. 13 Chen C M. CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57(3): 359-377. 14 杨选辉, 蔡志强. 基于突变检测与共词分析的关联数据新兴趋势探测[J]. 情报科学, 2018, 36(11): 164-168. 15 尚晓倩. 基于突变检测的国际Altmetrics研究热点和趋势分析[J]. 情报科学, 2017, 35(5): 51-56. 16 Xu M, Li G J, Wang X D. Detecting emerging topics by exploiting probability burst and association rule mining: a case study of Library and Information Science[J]. Malaysian Journal of Library & Information Science, 2020, 25(1): 47-66. 17 逯万辉, 马建霞, 赵迎光. 爆发词识别与主题探测技术研究综述[J]. 情报理论与实践, 2012, 35(6): 125-128. 18 Mane K K, B?rner K. Mapping topics and topic bursts in PNAS[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(Suppl 1): 5287-5290. 19 王征, 易莉, 赵磊. 基于突发词检测的科研热点发掘服务模型研究[J]. 情报杂志, 2015, 34(12): 176-180. 20 李牧南. 基于关联规则挖掘竞争情报研究前沿分析[J]. 情报杂志, 2016, 35(3): 54-60. 21 Li M N, Chu Y Q. Explore the research front of a specific research theme based on a novel technique of enhanced co-word analysis[J]. Journal of Information Science, 2017, 43(6): 725-741. 22 张金柱, 张晓林. 利用引用科学知识突变识别突破性创新[J]. 情报学报, 2014, 33(3): 259-266. 23 王莉亚. 基于关键词突变的主题突变研究[J]. 情报理论与实践, 2013, 36(11): 45-48. 24 钟辉新. 新兴趋势探测研究综述[J]. 现代情报, 2017, 37(12): 162-167. 25 洪娜, 张智雄, 乐小虬. 基于能量演化线索的潜在爆发词探测方法[J]. 现代图书情报技术, 2010(11): 45-52. 26 Qi X, Huang Y, Chen Z Y, et al. Burst-LDA: a new topic model for detecting bursty topics from stream text[J]. Journal of Electronics (China), 2014, 31(6): 565-575. 27 He D, Parker D S. Topic dynamics: an alternative model of bursts in streams of topics[C]// Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2010: 443-452. 28 洪娜, 张智雄, 乐小虬. 基于决策树的潜在爆发词探测方法[J]. 情报学报, 2012, 31(3): 228-241. 29 逯万辉, 马建霞. 基于CRFs的领域爆发词识别的研究与实现[J]. 情报科学, 2014, 32(1): 89-93. 30 Schoenmakers W, Duysters G. The technological origins of radical inventions[J]. Research Policy, 2010, 39(8): 1051-1059. |
|
|
|