|
|
Profiling Attribution on the Label of Scientific Research Institutions Based on the Ontology Model |
Guo Hongmei, Zeng Jianxun |
Institute of Science and Technical Information of China, Beijing 100038 |
|
|
Abstract Scientific research institutions are important objects of scientific research management and evaluation as well as important units of resource organization. With the development of Chinese science and technology, scientific research outputs have increased exponentially while scientific research activities have attained a wide range and diverse forms. Appropriately determining the characteristics of scientific research institutions from the massive scientific research results and identifying the related institutions from complex social networks have always been a concern of the scientific research community. Institutional profiling can help in understanding the institution, assisting scientific research planning and management decision-making, and identifying future partners and competitors. The study aimed to profile and identify the attributes and related institutions of scientific research institutions based on the ontology model. It selected the subject category and industry category attributions to discuss the process of labeling the attributes of scientific research institutions. Further, it selected cooperative and benchmarking institutions to discuss the process of identifying closely related institutions in the intricate network.
|
Received: 01 April 2021
|
|
|
|
1 Vizenor L T. Corporate being: a study in realist ontology[D]. Buffalo: The State University of New York at Buffalo, 2006. 2 Hodgson G M. What are institutions?[J]. Journal of Economic Issues, 2006, 40(1): 1-25. 3 Scott W R. Institutional carriers: reviewing modes of transporting ideas over time and space and considering their consequences[J]. Industrial and Corporate Change, 2003, 12(4): 879-894. 4 Searle J R. What is an institution?[J]. Journal of Institutional Economics, 2005, 1(1): 1-22. 5 Johannesson P, Bergholtz M, Eriksson O. Institution aware conceptual modeling[C/OL]// Proceedings of the ER Forum 2017 and the ER 2017 Demo Track, 2017: 263-270. (2017-11-05) [2021-03-25]. http://ceur-ws.org/Vol-1979/paper-15.pdf. 6 Cooper A. The inmates are running the asylum: why high tech products drive us crazy and how to restore the sanity[M]. 2nd Edition. Sams Publishing, 2004: 157-189. 7 Eke C I, Norman A A, Shuib L, et al. A survey of user profiling: state-of-the-art, challenges, and solutions[J]. IEEE Access, 2019, 7: 144907-144924. 8 曾建勋. 精准服务需要用户画像[J]. 数字图书馆论坛, 2017(12): 1. 9 刘海鸥, 孙晶晶, 苏妍嫄, 等. 国内外用户画像研究综述[J]. 情报理论与实践, 2018, 41(11): 155-160. 10 Liang S S, Zhang X L, Ren Z C, et al. Dynamic embeddings for user profiling in Twitter[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM Press, 2018: 1764-1773. 11 陈泽宇, 黄勃. 改进词向量模型的用户画像研究[J]. 计算机工程与应用, 2020, 56(1): 180-184. 12 Gu X T, Yang H, Tang J, et al. Profiling Web users using big data[J]. Social Network Analysis and Mining, 2018, 8: 24. 13 University ontology (draft)[EB/OL]. (2000-04-05) [2021-03-25]. http://www.cs.umd.edu/projects/plus/SHOE/onts/univ1.0.html. 14 Chakhmoune R, Behja H, Marzak A. Building corporate memories in collaborative way using ontologies: case study of a SSII[C]// Proceedings of the 2011 3rd International Conference on Next Generation Networks and Services. IEEE, 2011: 23-28. 15 Passerini Glazel L. Institutional ontology as an ontology of types[J]. Phenomenology and Mind, 2016(3): 78-91. 16 Eriksson O, Johannesson P, Bergholtz M. Institutional ontology for conceptual modeling[J]. Journal of Information Technology, 2018, 33: 105-123. 17 An organization ontology[EB/OL]. (2010-10-08) [2021-03-25]. http://epimorphics.com/public/vocabulary/org.html. 18 The organization ontology[EB/OL]. (2014-01-16) [2021-03-25]. https://www.w3.org/TR/vocab-org/. 19 叶壮壮. 基于Wikidata的机构本体构建研究[D]. 太原: 山西大学, 2019: 11-16. 20 金家琴, 夏翠娟. 数字人文数据基础设施建设中机构本体的构建: 研究和应用[J]. 图书馆论坛, 2020, 40(4): 30-39. 21 胡雪环. 科研机构本体的构建方式研究[D]. 北京: 中国科学技术信息研究所, 2016: 13-35. 22 曾建勋, 贾君枝. 机构名称规范数据的语义模型构建[J]. 大学图书馆学报, 2019, 37(1): 42-47. 23 Asumeng M A, Osae-Larbi J A. Organization development models: a critical review and implications for creating learning organizations[J]. European Journal of Training and Development Studies, 2015, 2(3): 29-43. 24 孟琳. 多源信息融合的机构画像的方法研究[D]. 北京: 北京邮电大学, 2018: 28-46. 25 Taneja G. How are higher education institutions defining their meta-description tags?[J]. International Journal of Educational Management, 2018, 32(7): 1293-1306. 26 Galan M D, Lawley M, Clements M. Social media’s use in postgraduate students’ decision-making journey: an exploratory study[J]. Journal of Marketing for Higher Education, 2015, 25(2): 287-312. 27 Kettunen J. Stakeholder relationships in higher education[J]. Tertiary Education and Management, 2015, 21(1): 56-65. 28 曾建勋. 中国高被引分析报告2019[M]. 北京: 科学技术文献出版社, 2021. |
|
|
|