|
|
Academic Output Distribution in Authors of Highly Cited Papers among Different City-University Clusters |
Zhang Guilan, Pan Yuntao, Zheng Chuhua, Wang Haiyan, Ma Zheng |
Institute of Scientific and Technical Information of China, Beijing 100038 |
|
|
Abstract In the open scientific research ecosystem environment, researchers were self-selective and self-organized to a certain extent in growth and development. The integrated development of universities and cities constituted the external ecological environment for researchers, which further affected their growth and development. Based on the economic level of cities and academic level of universities, this study proposed city-university clusters at different levels. We studied the academic output distribution of researchers among different city-university clusters. In this study, the authors of highly cited papers in artificial intelligence were used as examples. The basic and work information, project data, paper output data and patent output data of the authors were obtained comprehensively through data mining. We used statistical analysis and PSM (propensity score matching) to explore the distribution. We also examined the combined influence of city-university on their academic output. We found that the authors of highly cited papers were mainly concentrated in top universities, and ranking of universities and number of authors met the power function distribution law that a was negative. Certain differences were identified in the academic output distribution in authors of highly cited papers among different city-university clusters. The academic output of the higher level of city-university clusters was significantly higher, and degree of dispersion larger. Furthermore, university and city had double the influence on authors’ academic output. The influence of university on academic output was higher than that of city. The high-quality university platform could make up for the influence of city economic level on researchers’ academic output.
|
Received: 21 May 2022
|
|
|
|
1 刘晖, 李嘉慧. 论大学与城市发展的时空逻辑[J]. 教育发展研究, 2018, 38(5): 1-7. 2 朱英, 郑晓齐, 章琰. 中国科技创新人才的流动规律分析——基于国家“万人计划”科技创新领军人才的实证研究[J]. 中国科技论坛, 2020(3): 166-173. 3 解兆丹, 杨永环. “环境-科研效能感”下的高校青年科技人才创新能力研究[J]. 科学管理研究, 2020, 38(1): 148-152. 4 Bland C J, Center B A, Finstad D A, et al. The impact of appointment type on the productivity and commitment of full-time faculty in research and doctoral institutions[J]. The Journal of Higher Education, 2006, 77(1): 89-123. 5 Dubbelt L, Rispens S, Demerouti E. Work engagement and research output among female and male scientists[J]. Journal of Personnel Psychology, 2016, 15(2): 55-65. 6 魏雅慧, 刘雪立, 刘睿远. 不同身份作者的科研产出力与学术影响力分析——以情报学CSSCI期刊为例[J]. 中国科技期刊研究, 2018, 29(2): 159-164. 7 靳露. 高等教育学科教师科研产出的影响因素研究——基于人口统计学视角[D]. 兰州: 兰州大学, 2021. 8 钱艳俊, 林军, 景飞, 等. 留学经历对科研人员至关重要吗? ——以高被引国际论文为例[J]. 情报资料工作, 2018(5): 100-106. 9 王双, 赵筱媛, 潘云涛, 等. 学术谱系视角下的科技人才成长研究——以图灵奖人工智能领域获奖者为例[J]. 情报学报, 2018, 37(12): 1232-1240. 10 陈丽媛, 荀渊. 学术人才国际流动如何影响科研产出——以四所“双一流”建设高校的经济学科为例[J]. 教育发展研究, 2020, 40(21): 11-19. 11 李纲, 刘先红. 科研团队中学术带头人的合作特征及其对科研产出的影响[J]. 情报理论与实践, 2016, 39(6): 70-75. 12 刘俊婉. 科学合作对高被引科学家论文产出力的影响分析[J]. 情报科学, 2014, 32(12): 77-81. 13 李欢, 杨希. “双一流”建设学科团队青年教师晋升标准对科研产出的影响——基于高校国家重点实验室的调查分析[J]. 重庆高教研究, 2019, 7(5): 45-56. 14 杨梦婷, 潘启亮. 我国原创性科研成果产出的影响因素和激励机制研究[J]. 科技管理研究, 2021, 41(9): 15-20. 15 张光磊, 廖建桥, 金鑫. 社会资本、学术寻租与教职终身制——高校科研工作者教职聘任制模式研究[J]. 高等教育研究, 2008, 29(12): 28-34. 16 周霞, 何小文, 张骁. 社会资本对科研产出的影响因素研究——基于“985”高校的实证[J]. 科技管理研究, 2016, 36(8): 87-90, 102. 17 Albert C, Davia M A, Legazpe N. Determinants of research productivity in Spanish academia[J]. European Journal of Education, 2016, 51(4): 535-549. 18 Fursov K, Roshina Y, Balmush O, et al. Determinants of research productivity: an individual-level lens[J]. Foresight and STI Governance, 2016, 10(20): 44-56. 19 Kennedy M R, Brancolini K R, Kennedy D P. An exploratory study of accomplished librarian-researchers[J]. Evidence Based Library and Information Practice, 2020, 15(1): 179-217. 20 周亮, 张亚. 中国顶尖学术型人才空间分布特征及其流动趋 势——以中国科学院院士为例[J]. 地理研究, 2019, 38(7): 1749-1763. 21 方勇, 邵振权, 冯勇. 国家杰出青年科学基金项目负责人成长特征研究——基于学术生命周期理论与数据分析[J]. 中国高校科技, 2021(7): 28-33. 22 靳军宝, 曲建升, 吴新年, 等. 中国高层次科技人才省际流动复杂网络特征研究[J]. 科技管理研究, 2021, 41(21): 112-118. 23 刘先红. 我国高层次科技人才流动的规模分布与空间格局[J]. 中国科技人才, 2021(5): 31-40. 24 王运红, 贾佳, 郑雯雯, 等. 高成长性青年科技人才的分布特征与发展建议——基于从事基础研究的青年博士群体分析[J]. 中国基础科学, 2021, 23(5): 64-70. 25 Zhao Z Y, Bu Y, Kang L L, et al. An investigation of the relationship between scientists’ mobility to/from China and their research performance[J]. Journal of Informetrics, 2020, 14(2): 101037. 26 吕小康. 非随机数据的倾向值匹配: 逻辑、方法与局限[J]. 统计与决策, 2013(21): 79-81. 27 胡安宁. 倾向值匹配与因果推论: 方法论述评[J]. 社会学研究, 2012, 27(1): 221-242, 246. 28 工业和信息化部人才交流中心. 人工智能产业人才发展报告(2019—2020年版)[R]. 北京: 工业和信息化部, 2020. 29 Scott A J, Storper M. High technology industry and regional development: a theoretical critique and reconstruction[J]. International Social Science Journal, 1987, 39(2): 215-232. 30 叶梦伟. 粤港澳大湾区战略背景下珠三角九市人才引进政策的评述分析[J]. 营销界, 2020(21): 57-58. 31 泽平宏观: 2020中国城市人才吸引力排名[EB/OL]. (2020-05-12) [2021-07-13]. http://www.199it.com/archives/1047250.html. 32 王若宇, 黄旭, 薛德升, 等. 2005—2015年中国高校科研人才的时空变化及影响因素分析[J]. 地理科学, 2019, 39(8): 1199-1207. 33 张宝生, 王天琳, 王晓红. 政府科技经费投入、研发规模与高校基础研究科研产出的关系——基于省际面板数据的门槛回归分析[J]. 中国科技论坛, 2021(4): 55-63, 74. 34 孙健. 人才集聚的理论分析与实证研究[M]. 北京: 科学出版社, 2014. 35 刘思峰, 王锐兰. 科技人才集聚的机制、效应与对策[J]. 南京航空航天大学学报(社会科学版), 2008, 10(1): 47-51. |
|
|
|