|
|
Examining Novelty of Technological Topics Based on Combination Probabilities |
Sun Xiaoling, Chen Na, Ding Kun |
Institute of Science of Science and S&T Management, Dalian University of Technology, Dalian 116024 |
|
|
Abstract Technological novelty is considered to be an important driving force to facilitate the breakthrough of innovation. Comprehensively measuring the novelty of technological topics can help identify novelty patents as early as possible and reduce the risk of delayed identification of emerging key technologies. As a knowledge element of technology, subject headings can adequately represent the subject content and methods of technological inventions. This study proposes a method to measure the novelty of technological topics from the perspective of combination probability, which integrates the direct combination times, indirect combination probability, and semantic similarity of patent subject words. Taking invention patents in the field of artificial intelligence as an example, it is verified that the method can capture the potential distance between subject word combinations, as well as identify more novelty combinations than a single indicator. The study’s findings indicate that high novelty/high conventional patents exhibit a higher average number of citations, and the high novelty patents exhibit the highest probability of becoming highly cited patents.
|
Received: 09 October 2021
|
|
|
|
1 Schoenmakers W, Duysters G. The technological origins of radical inventions[J]. Research Policy, 2010, 39(8): 1051-1059. 2 Malva A D, Kelchtermans S, Leten B, et al. Basic science as a prescription for breakthrough inventions in the pharmaceutical industry[J]. The Journal of Technology Transfer, 2015, 40(4): 670-695. 3 Kaplan S, Vakili K. The double-edged sword of recombination in breakthrough innovation[J]. Strategic Management Journal, 2015, 36(10): 1435-1457. 4 Kelley D J, Ali A, Zahra S A. Where do breakthroughs come from? Characteristics of high-potential inventions[J]. Journal of Product Innovation Management, 2013, 30(6): 1212-1226. 5 Verhoeven D, Bakker J, Veugelers R. Measuring technological novelty with patent-based indicators[J]. Research Policy, 2016, 45(3): 707-723. 6 Fleming L. Recombinant uncertainty in technological search[J]. Management Science, 2001, 47(1): 117-132. 7 吴菲菲, 栾静静, 黄鲁成, 等. 基于新颖性和领域交叉性的知识前沿性专利识别——以老年福祉技术为例[J]. 情报杂志, 2016, 35(5): 85-90. 8 Youn H, Strumsky D, Bettencourt L M A, et al. Invention as a combinatorial process: evidence from US patents[J]. Journal of the Royal Society Interface, 2015, 12(106): 20150272. 9 马荣康, 王艺棠. 知识组合多样性、新颖性与突破性发明形成[J]. 科学学研究, 2020, 38(2): 313-322. 10 Arthur W B. The structure of invention[J]. Research Policy, 2007, 36(2): 274-287. 11 孙晓玲, 丁堃. 基于知识基因发现的科学与技术关系研究[J]. 情报理论与实践, 2017, 40(6): 23-26, 17. 12 任海英, 邵文, 李欣. 基于专利内容新颖性和常规性的突破性发明影响因素和研发策略分析[J]. 情报杂志, 2019, 38(2): 56-63. 13 刘玉琴, 汪雪锋, 雷孝平. 基于文本挖掘技术的专利质量评价与实证研究[J]. 计算机工程与应用, 2007, 43(33): 12-14. 14 Schilling M A, Green E. Recombinant search and breakthrough idea generation: an analysis of high impact papers in the social sciences[J]. Research Policy, 2011, 40(10): 1321-1331. 15 Lee C Y, Kang B, Shin J. Novelty-focused patent mapping for technology opportunity analysis[J]. Technological Forecasting and Social Change, 2015, 90: 355-365. 16 Kim D, Cerigo D B, Jeong H, et al. Technological novelty profile and invention's future impact[J]. EPJ Data Science, 2016, 5: 8. 17 Lee C, Park G, Kang J N. The impact of convergence between science and technology on innovation[J]. The Journal of Technology Transfer, 2018, 43(2): 522-544. 18 孙晓玲, 李冰, 杨阳, 等. 科学知识对技术知识遗传的影响研究——基于多引用代与语义内容视角[J]. 科学学与科学技术管理, 2019, 40(2): 3-15. 19 Uzzi B, Mukherjee S, Stringer M, et al. Atypical combinations and scientific impact[J]. Science, 2013, 342(6157): 468-472. 20 Klavans R, Boyack K W. Identifying a better measure of relatedness for mapping science[J]. Journal of the American Society for Information Science and Technology, 2006, 57(2): 251-263. 21 Lee Y N, Walsh J P, Wang J. Creativity in scientific teams: unpacking novelty and impact[J]. Research Policy, 2015, 44(3): 684-697. 22 Wang J, Veugelers R, Stephan P. Bias against novelty in science: a cautionary tale for users of bibliometric indicators[J]. Research Policy, 2017, 46(8): 1416-1436. 23 Veugelers R, Wang J. Scientific novelty and technological impact[J]. Research Policy, 2019, 48(6): 1362-1372. 24 沈阳. 一种基于关键词的创新度评价方法[J]. 情报理论与实践, 2007, 30(1): 125-127. 25 钱玲飞, 杨建林, 张莉. 基于关键词分析的学科创新力比较——以情报学图书馆学为例[J]. 情报理论与实践, 2011, 34(1): 117-120. 26 杨建林, 钱玲飞. 基于关键词对逆文档频率的主题新颖度度量方法[J]. 情报理论与实践, 2013, 36(3): 99-102. 27 任海英, 王德营, 王菲菲. 主题词组合新颖性与论文学术影响力的关系研究[J]. 图书情报工作, 2017, 61(9): 87-93. 28 Strumsky D, Lobo J, van der Leeuw S. Using patent technology codes to study technological change[J]. Economics of Innovation and New Technology, 2012, 21(3): 267-286. 29 Strumsky D, Lobo J. Identifying the sources of technological novelty in the process of invention[J]. Research Policy, 2015, 44(8): 1445-1461. 30 张振刚, 罗泰晔. 基于知识组合理论的技术机会发现[J]. 科研管理, 2020, 41(8): 220-228. 31 王萍萍, 王毅. 技术新颖性从何而来?——基于纳米技术专利的分析[J]. 管理工程学报, 2020, 34(6): 79-89. 32 Arts S, Hou J N, Gomez J C. Natural language processing to identify the creation and impact of new technologies in patent text: code, data, and new measures[J]. Research Policy, 2021, 50(2): 104144. 33 Shannon C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3): 379-423. 34 Adamic L A, Adar E. Friends and neighbors on the web[J]. Social Networks, 2003, 25(3): 211-230. 35 Katz L. A new status index derived from sociometric analysis[J]. Psychometrika, 1953, 18(1): 39-43. 36 Liben-Nowell D, Kleinberg J. The link-prediction problem for social networks[J]. Journal of the American Society for Information Science and Technology, 2007, 58(7): 1019-1031. 37 Sun X L, Lin H F, Xu K, et al. How we collaborate: characterizing, modeling and predicting scientific collaborations[J]. Scientometrics, 2015, 104(1): 43-60. 38 Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2013: 3111-3119. 39 张振刚, 黄洁明, 陈一华. 基于专利计量的人工智能技术前沿识别及趋势分析[J]. 科技管理研究, 2018, 38(5): 36-42. 40 赵蓉英, 李新来, 李丹阳. 专利引证视角下的核心专利研究——以人工智能领域为例[J]. 情报理论与实践, 2019, 42(3): 78-84. 41 Frankish K, Ramsey W M. The Cambridge handbook of artificial intelligence[M]. Cambridge: Cambridge University Press, 2014. |
|
|
|