|
|
Measurement and Analysis of Journal Discriminative Capacity Based on Difference |
Zhang Baolong1,2, Wang Hao1,2, Deng Sanhong1,2, Su Xinning1,2 |
1.School of Information Management, Nanjing University, Nanjing 210023 2.Jiangsu Key Laboratory of Data Engineering & Knowledge Service, Nanjing 210023 |
|
|
Abstract Current research on journal evaluation focuses primarily on measurement of influence, reputation, quality, and similar concepts. This paper evaluates journals from a new perspective based on content difference, proposing journal discriminative capacity as an index to measure differences in academic journals content. Twenty core journals for each of the five disciplines, which are library and information science (LIS), aerospace, biology, art and law, were selected as research objects. First, content differences between LIS journals were quantitatively analyzed and evaluated. Trends in LIS journals discriminative capacity over time were then explored. Finally, the characteristics of individual and overall discriminative capacity of journals from different disciplines were analyzed and discussed. The results show that the index is highly effective in measuring differences in journal research content, that journals discriminative capacity shows obvious trends over time, and that individual and overall journal discriminative capacity has significant disciplinary characteristics.
|
Received: 19 March 2019
|
|
|
|
1 ZhangF L. Evaluating journal impact based on weighted citations[J]. Scientometrics, 2017, 113(2): 1155-1169. 2 SaltonG, YangC S. On the specification of term values in automatic indexing[J]. Journal of Documentation, 1973, 29(4): 351-372. 3 SaltonG, YangC S, YuC T. A theory of term importance in automatic text analysis[J]. Journal of the American Society for Information Science, 1975, 26(1): 33-44. 4 PushpalathaK P, RajuG. Analysis of algorithms used to compute term discrimination values[C]// Proceedings of the IEEE International Conference on Computational Intelligence and Computing Research. IEEE, 2010. 5 张慧玲, 董坤, 许海云. 学术期刊影响力评价方法研究进展[J]. 图书情报工作, 2018, 62(16): 132-143. 6 LewisB R, TempletonG F, LuoX. A scientometric investigation into the validity of IS journal quality measures[J]. Journal of the Association for Information Systems, 2007, 8(12): Article No. 35. 7 万昊, 谭宗颖, 朱相丽. 同行评议与文献计量在科研评价中的作用分析比较[J]. 图书情报工作, 2017, 61(1): 134-152. 8 GarfieldE. Long-term vs. short-term journal impact: does it matter?[J]. Scientist, 1998, 12(3): 11-12. 9 VinklerP. Introducing the current contribution index for characterizing the recent, relevant impact of journals[J]. Scientometrics, 2009, 79(2): 409-420. 10 俞立平. 历史影响因子: 一个新的学术期刊存量评价指标[J]. 图书情报工作, 2015, 59(2): 89-92. 11 MoedH F. Measuring contextual citation impact of scientific journals[J]. Journal of Informetrics, 2010, 4(3): 265-277. 12 BraunT, Gl?nzelW, SchubertA. A Hirsch-type index for journal[J]. Scientometrics, 2006, 69: 169-173. 13 EggheL. Theory and practise of the g-index[J]. Scientometrics, 2006, 69(1): 131-152. 14 WoegingerG J. An axiomatic characterization of the Hirsch-index[J]. Mathematical Social Sciences, 2008, 56(2): 224-232. 15 KosmulskiM. A new Hirsch-type index saves time and works equally well as the original h-index[J]. ISSI Newsletter, 2006, 2(3): 4-6. 16 PrathapG. Is there a place for a mock h-index?[J]. Scientometrics, 2010, 84(1): 153-165. 17 俞立平, 李守伟. 标准特征因子的特点与应用分析[J]. 中国科技期刊研究, 2016, 27(9): 990-993. 18 González-PereiraB, Guerrero-BoteV P, Moya-AnegónF. A new approach to the metric of journals scientific prestige: The SJR indicator[J]. Journal of Informetrics, 2010, 4(3): 379-391. 19 Guerrero-BoteV P, Moya-AnegónF. A further step forward in measuring journals scientific prestige: The SJR2 indicator[J]. Journal of Informetrics, 2012, 6(4): 674-688. 20 李超. “HIF指数”评价科技期刊学术影响的机理与实践[J]. 情报理论与实践, 2011, 34(7): 44-48. 21 宋晓晨, 李梦豪, 周良. 一种新型期刊评价方法——基于论文作者简介的分析[J]. 情报学报, 2018, 37(9): 874-881. 22 ZhangC, LiuX, XuY C, et al. Quality-structure index: A new metric to measure scientific journal influence[J]. Journal of the American Society for Information Science and Technology, 2011, 62(4): 643-653. 23 徐芳, 刘文斌. 从知识积累角度评价SCI期刊学术质量[J]. 情报学报, 2013, 32(10): 1075-1089. 24 马峥, 潘云涛, 武夷山. 基于引文分析的科技期刊竞争压力评价及学科间比较研究[J]. 情报学报, 2013, 32(10): 1026-1036. 25 王雯霞, 刘春丽. 不同学科间论文影响力评价指标模型的差异性研究[J]. 图书情报工作, 2017, 61(13): 108-116. 26 刘芳, 朱沙. 学术期刊与学术成果影响力主要评价指标差异性研究——以Nature期刊为例[J]. 情报杂志, 2015, 34(8): 65-69. 27 汪新红, 王国红. 学术期刊主要评价指标的学科差异性研究[J]. 科技与出版, 2013(2): 85-88. 28 盛丽娜, 顾欢. SSCI收录期刊不同学科Article和Review参考文献量的差异性分析[J]. 中国科技期刊研究, 2018, 29(11): 1153-1159. 29 张丽华, 田丹, 曲建升. 中国学者发表会议论文的领域差异性与载体差异性研究[J]. 情报杂志, 2018, 37(6): 133-140. 30 ThelwallM. Differences between journals and years in the proportions of students, researchers and faculty registering Mendeley articles[J]. Scientometrics, 2018, 115(2): 717-729. 31 YoonH Y, BangH S, WooS H. A comparative study on the logistics research between international and Korean journals[J]. The Asian Journal of Shipping and Logistics, 2016, 32(3): 149-156. 32 柏志安, 曾剑平. 基于重叠度与完整度的LDA主题优选方法[J]. 计算机工程与应用, 2019, 55(12): 155-161. 33 逯万辉. 基于深度学习的学术期刊选题同质化测度方法研究[J]. 情报资料工作, 2017(5): 105-112. 34 田大芳, 张瑞丽, 魏瑞斌. 基于关键词的期刊发文的相似性测度研究[J]. 现代情报, 2018, 38(11): 105-108, 160. 35 叶鹰. 国际学术评价指标研究现状及发展综述[J]. 情报学报, 2014, 33(2): 215-224. 36 ZhangJ, KorfhageR R. A distance and angle similarity measure method[J]. Journal of the American Society for Information Science, 1999, 50(9): 772-778. 37 韩毅, 李健. 图书馆学、情报学与档案学的共性与差异分析[J]. 情报资料工作, 2012(4): 5-10. |
|
|
|