|
|
Communication of Scientific and Technological Innovation Information on Twitter: Analyzing Tweeting Behavior from the Perspective of Information Interaction |
Zhu Na1, Wang Fang2 |
1.Department of Information Resource Management, School of Computer Science, Southwest University, Chongqing 400715 2.Department of Information Resources Management, Business School, Nankai University, Tianjin 300001 |
|
|
Abstract In recent years, the dissemination of scientific and technological innovation information on Twitter has become a hot topic of discussion in the field of Library and Information Science. Exploring the communication channels used by different users to discuss scientific and technological innovation through network scientific thinking can help identify the role of users in the communication process and reveal the characteristics of users’ communication behavior. Based on real communication data of Twitter users, this research encoded the types of users identified through content analysis, and divided them into seven types. Representing users as nodes, we visualized and analyzed the communication network in the subject area of scientific and technological innovation. By calculating the network structure parameters, we identified the communication behavior characteristics of different types of users and their communication roles. The results showed that, scientific researchers were the main actors in the dissemination of information about scientific and technological innovation, and journals and magazines had the highest degree of participation in communication. The direction of communication regarding scientific and technological innovation was from the scientific community to the public, from authoritative users to ordinary users. In the communication network, the information sources were either extremely rich or extremely poor; the capacity of information interaction between different types of users was poor. We found that blindly increasing the number of information sources could easily increase the opportunity cost of communication. Instead, we recommend appropriately increasing the number of high-quality information sources that are genuine and well-respected. In addition, enhancing the information interaction ability of the sources in the network community can also improve the scope of dissemination and popularization of scientific and technological innovation information.
|
Received: 16 December 2019
|
|
|
|
1 Bosman J, Kramer B. 101 innovations in scholarly communication—the changing resrarch workflow[EB/OL]. [2017-10-30]. http://innoscholcomm.silk.co/. 2 Priem J, Costello K, Dzuba T. First-year graduate students just wasting time? Prevalence and use of Twitter among scholars[C/OL]// Metrics 2011 Symposium on Informetric and Scientometric Research, New Orleans, LA, USA, 2011. http://jasonpriem.org/self-archived/5uni-poster.png. 3 Hayashi R, Ishikawa Y, Sasamoto Y, et al. Co-ordinated ocular development from human iPS cells and recovery of corneal function[J]. Nature, 2016, 531(7594): 376-380. 4 Adie E, Roe W. Altmetric: Enriching scholarly content with article‐level discussion and metrics[J]. Learned Publishing, 2013, 26(1): 11-17. 5 Robinson-García N, Torres-Salinas D, Zahedi Z, et al. New data, new possibilities: Exploring the insides of Altmetric.com[J]. El Profesional de la Información, 2014, 23(4): 359-366. 6 Haustein S, Costas R, Larivière V. Characterizing social media metrics of scholarly papers: The effect of document properties and collaboration patterns[J]. PLoS ONE, 2015, 10(3): e0120495. 7 舒非, HausteinS, 全薇. 推特(Twitter)对中国论文的国际关注度影响研究[J]. 图书馆论坛, 2017, 37(6): 55-60. 8 戴佳男. 基于MapReduce模型的海量邮件社交关系分析研究[D]. 南京: 南京理工大学, 2015. 9 毛佳昕, 刘奕群, 张敏, 等. 基于用户行为的微博用户社会影响力分析[J]. 计算机学报, 2014, 37(4): 791-800. 10 朱郭峰, 杨彦, 周竹荣, 等. 基于领域的微博用户影响力计算方法[J]. 西南大学学报(自然科学版), 2014, 36(3): 145-151. 11 张敏, 唐国庆, 张磊. 在线社交学习中用户知识贡献行为的影响因素研究——基于“利己”与“利他”的双重情境[J]. 情报杂志, 2016, 35(10): 146-152, 180. 12 张静, 赵玲. 基于解释结构模型的微博用户群体行为影响因素分析[J]. 情报科学, 2016, 34(8): 29-35. 13 Cronin B, Sugimoto C R. Beyond bibliometrics: Harnessing multidimensional indicators of scholarly impact[M]. Cambridge: MIT Press, 2014. 14 Hall B H, Khan B. Adoption of new technology[R]. National Bureau of Economic Research, 2003. 15 Wouters P, Costas R. Users, narcissism and control: Tracking the impact of scholarly publications in the 21st century[M]. Utrecht: SURF Foundation, 2012. 16 Haustein S, Peters I, Sugimoto C R, et al. Tweeting biomedicine: An analysis of tweets and citations in the biomedical literature[J]. Journal of the Association for Information Science and Technology, 2014, 65(4): 656-669. 17 Piwowar H. Value all research products[J]. Nature, 2013, 493(7431): 159. 18 Forkosh-Baruch A, Hershkovitz A. A case study of Israeli higher-education institutes sharing scholarly information with the community via social networks[J]. The Internet and Higher Education, 2012, 15(1): 58-68. 19 Denis G, Klein S, Gueguen B. Use of social networks for outreach, education and training on space applications: Know-how and experience of Planete Sciences Midi-Pyrenees and CNES[J]. Acta Astronautica, 2014, 94(2): 765-775. 20 Thackeray R, Neiger B L, Smith A K, et al. Adoption and use of social media among public health departments[J]. BMC Public Health, 2012, 12: 242. 21 杨鹏, 史丹梦. 真伪博弈: 微博空间的科学传播机制——以“谣言粉碎机”微博为例[J]. 新闻大学, 2011(4): 145-150. 22 张光斌. 科普期刊的微博内容分析及其应用研究——以新浪微博为例[J]. 科技与出版, 2012(6): 106-109. 23 Kieslinger B, Ebner M. A qualitative approach towards discovering microblogging practices of scientists[C]// Proceedings of the 14th International Conference on Interactive Collaborative Learning, 2011. 24 史春薇, 陈平, 朱伟, 等. 微型博客应用于科技期刊的研究[J]. 中国科技期刊研究, 2013, 24(1): 134-135. 25 代玉梅. 自媒体的本质: 信息共享的即时交互平台[J]. 云南社会科学, 2011(6): 172-174. 26 Barabási A L. Scale-free networks: A decade and beyond[J]. Science, 2009, 325(5939): 412-413. 27 康伟. 基于SNA的突发事件网络舆情关键节点识别——以“7?23动车事故”为例[J]. 公共管理学报, 2012, 9(3): 101-111, 127-128. 28 刘军. 社会网络分析导论[M]. 北京: 社会科学文献出版社, 2004: 45-56. 29 Freeman L C. Centrality in social networks conceptual clarification[J]. Social Networks, 1978, 1(3): 215-239. 30 Nieminen J. On the centrality in a graph[J]. Scandinavian Journal of Psychology, 1974, 15(1): 332-336. 31 平亮, 宗利永. 基于社会网络中心性分析的微博信息传播研究——以Sina微博为例[J]. 图书情报知识, 2010(6): 92-97. 32 Bavelas A. Communication patterns in task-oriented groups[J]. The Journal of the Acoustical Society of America, 1950, 22(6): 725-730. 33 Sabidussi G. The centrality index of a graph[J]. Psychometrika, 1966, 31(4): 581-603. 34 Didegah F, Thelwall M. Co-saved, co-tweeted, and co-cited networks[J]. Journal of the Association for Information Science and Technology, 2018, 69(8): 959-973. 35 王夏洁, 刘红丽. 基于社会网络理论的知识链分析[J]. 情报杂志, 2007, 26(2): 18-21. 36 角德文, 徐万鹏, 陈谅. Alzheimer病的流行病学[J]. 日本医学介绍, 2007, 28(11): 500-502. 37 刘伯宁. 新媒体语境下的“草根”科普: 体会与建言[J]. 科普研究, 2012, 7(6): 11-15. 38 Blondel V D, Guillaume J L, Lambiotte R, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008, 2008(10): P10008. 39 Fruchterman T M J, Reingold E M. Graph drawing by force-directed placement[J]. Software: Practice and Experience, 1991, 21(11): 1129-1164. 40 Ohara T, Hata J, Yoshida D, et al. Trends in dementia prevalence, incidence, and survival rate in a Japanese community[J]. Neurology, 2017, 88(20): 1925-1932. 41 Birkholz J M, Seeber M, Holmberg K. Drivers of higher education institutions’ visibility: A study of UK HEIs social media use vs. organizational characteristics[C]// Proceedings of the 15th International Society of Scientometrics and Informetrics Conference, 2015: 502-513. 42 Tsou A, Bowman T D, Ghazinejad A, et al. Who tweets about science?[C]// Proceedings of the 15th International Society of Scientometrics and Informetrics Conference, 2015. 43 Adamic L, Buyukkokten O, Adar E. A social network caught in the Web[J]. First Monday, 2003, 8(6): 29. 44 冯云生, 李建昌. 基于产业集群的技术创新扩散动力因素分析[J]. 东吴学术, 2012(1): 85-90. |
|
|
|