|
|
Research on Identification of Potential Competitors Based on the Semantic Analysis of Patent Specification |
Shi Min, Luo Jian, Cai Lijun |
Business School, Hunan Agricultural University, Changsha 410128 |
|
|
Abstract Based on the semantic analysis of patent specification, the research of potential competitor identification can help enterprises determine strong competitors early on, provide information for strategic decision-making, and enrich the research theory of potential competitors. The background technology and invention content of the patent specification contain rich market and technical information. A three-dimensional preliminary identification framework of potential competitors, including background similarity, solution similarity, and time axis, is constructed based on the patent specification. Based on LDA semantic analysis technology, this study constructs a potential competitor identification process, including four steps: collecting and preprocessing patent data, building a corpus, initially identifying potential competitors, and confirming potential competitors. Taking the field of water environment as an example, the feasibility and effectiveness of the method are proved.
|
Received: 11 February 2020
|
|
|
|
1 Bower J L, Christensen C M. Disruptive technologies: Catching the wave[J]. Harvard Business Review, 1995, 73: 43-53. 2 Fabry B, Ernst H, Langholz J, et al. Patent portfolio analysis as a useful tool for identifying R&D and business opportunities—An empirical application in the nutrition and health industry[J]. World Patent Information, 2006, 28(3): 215-225. 3 Chen M J. Competitor analysis and interfirm rivalry: Toward a theoretical integration[J]. Academy of Management Review, 1996, 21(1): 100-134. 4 Peteraf M A, Bergen M. Scanning dynamic competitive landscapes: A customer and resource based framework[R]. Carlson School of Management, University of Minnesota, 2001. 5 Bergen M, Peteraf M A. Competitor identification and competitor analysis: A broad-based managerial approach[J]. Managerial and Decision Economics, 2002, 23(4-5): 157-169. 6 Peng Y S, Liang I C. A dynamic framework for competitor identification: A neglecting role of dominant design[J]. Journal of Business Research, 2016, 69(5): 1898-1903. 7 温金林, 于英川. 监视竞争对手——对竞争对手进行排序[J]. 情报学报, 2001, 20(5): 598-603. 8 王曰芬, 甘利人. 竞争对手的情报研究[J]. 情报理论与实践, 2001, 24(4): 271-273. 9 王德恒, 吴潇. 竞争对手识别研究[J]. 商业研究, 2003(17): 30-32. 10 刘志辉, 李辉, 李文绚, 等. 基于多维框架的企业竞争威胁测度方法研究[J]. 情报学报, 2017, 36(7): 654-662. 11 张敬伟, 杜鑫. 撕开潜在对手的隐身衣[J]. 企业管理, 2018(8): 86-87. 12 Ernst H. Patent information for strategic technology management[J]. World Patent Information, 2003, 25(3): 233-242. 13 Tang J, Li W C, Usadi A K, et al. PatentMiner: Topic-driven patent analysis and mining[C]// Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2012: 1366-1374. 14 Lee M, Lee S. Identifying new business opportunities from competitor intelligence: An integrated use of patent and trademark databases[J]. Technological Forecasting and Social Change, 2017, 119: 170-183. 15 Grieser W, Liu Z. Corporate investment and innovation in the presence of competitor constraints[J]. The Review of Financial Studies, 2019, 32(11): 4271-4303. 16 王兴旺, 孙济庆. 专利地图技术在竞争对手分析中的应用研究[J]. 中国科技论坛, 2009(6): 88-94. 17 张红芹, 鲍志彦. 基于专利地图的竞争对手识别研究[J]. 情报科学, 2011, 29(12): 1825-1829. 18 张虎胆. 基于专利网络方法的技术竞争对手识别研究[D]. 武汉: 武汉大学, 2013. 19 吴菲菲, 杨梓, 黄鲁成. 基于专利信息的企业潜在竞争对手识别——以OLED技术为例[J]. 情报学报, 2017, 36(9): 954-963. 20 Porter M E. The five competitive forces that shape strategy[J]. Harvard Business Review, 2008, 86(1): 25-40. 21 中华人民共和国专利法(2008修正)[EB/OL]. (2015-09-02) [2020- 03-13]. https://www.cnipa.gov.cn/art/2015/9/2/art_97_28193.html 22 国家知识产权局. 专利审查指南[EB/OL]. (2019-12-31) [2020-03-13]. https://www.cnipa.gov.cn/art/2019/12/31/art_526_145920.html. 23 中华人民共和国专利法实施细则(2010修订)[EB/OL]. (2015-09-02) [2020-03-13]. https://www.cnipa.gov.cn/art/2015/9/2/art_98_28203.html. 24 Seol H, Lee S, Kim C. Identifying new business areas using patent information: A DEA and text mining approach[J]. Expert Systems with Applications, 2011, 38(4): 2933-2941. 25 Ernst H. Patent applications and subsequent changes of performance: Evidence from time-series cross-section analyses on the firm level[J]. Research Policy, 2001, 30(1): 143-157. 26 Blei D M, Ng A Y, Jordan M I. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022. 27 Phan X H, Nguyen L M, Horiguchi S. Learning to classify short and sparse text & web with hidden topics from large-scale data collections[C]// Proceedings of the 17th International Conference on World Wide Web. New York: ACM Press, 2008: 91-100. 28 Titov I, McDonald R. Modeling online reviews with multi-grain topic models[C]// Proceedings of the 17th International Conference on World Wide Web. New York: ACM Press, 2008: 111-120. 29 Sugimoto C R, Li D F, Russell T G, et al. The shifting sands of disciplinary development: Analyzing North American Library and Information Science dissertations using latent Dirichlet allocation[J]. Journal of the American Society for Information Science and Technology, 2011, 62(1): 185-204. 30 王博, 刘盛博, 丁堃, 等. 基于LDA主题模型的专利内容分析方法[J]. 科研管理, 2015, 36(3): 111-117. 31 李杰, 王小伟. 基于作者主题模型的遥感图像自动类别标注方法[J]. 计算机应用与软件, 2013, 30(10): 263-265, 296. 32 徐涵, 刘小平. 作者主题模型及其改进的方法与应用研究综述[J]. 图书情报工作, 2019, 63(7): 135-145. 33 赵华, 章成志. 利用作者主题模型进行图书馆UGC的主题发现与演化研究[J]. 图书馆论坛, 2016, 36(7): 34-45. 34 赵鑫. 主题模型在文本挖掘中的应用[D]. 北京: 北京大学, 2011. 35 Rosen-Zvi M, Chemudugunta C, Griffiths T, et al. Learning author-topic models from text corpora[J]. ACM Transactions on Information Systems, 2010, 28(1): 1-38. 36 关鹏, 王曰芬. 科技情报分析中LDA主题模型最优主题数确定方法研究[J]. 现代图书情报技术, 2016(9): 42-50. 37 王静茹, 陈震. 基于隐含狄利克雷分布的文本主题提取对比研究[J]. 情报科学, 2018, 36(1): 102-107. 38 陈果, 吴微. 细分领域LDA主题分析中选词方案的效果对比研究[J]. 情报理论与实践, 2019, 42(6): 138-143. 39 Mortensen O. The author-topic model[D]. Kongens Lyngby: Technical University of Denmark, 2017. 40 Newman D, Noh Y, Talley E M, et al. Evaluating topic models for digital libraries[C]// Proceedings of the 10th Annual Joint Conference on Digital Libraries. New York: ACM Press, 2010: 215-224. 41 R?der M, Both A, Hinneburg A. Exploring the space of topic coherence measures[C]// Proceedings of the Eighth ACM International Conference on Web Search and Data Mining. New York: ACM Press, 2015: 399-408. 42 Mimno D, Wallach H M, Talley E, et al. Optimizing semantic coherence in topic models[C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2011: 262-272. 43 Stevens K, Kegelmeyer P, Andrzejewski D, et al. Exploring topic coherence over many models and many topics[C]// Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Stroudsburg: Association for Computational Linguistics, 2012: 952-961. 44 赵亮, 刘建辉, 王星. 基于Hellinger距离的混合数据集中分类变量相似度分析[J]. 计算机科学, 2016, 43(6): 280-282, 307. 45 Zhang H P, Yu H K, Xiong D Y, et al. HHMM-based Chinese lexical analyzer ICTCLAS[C]// Proceedings of the Second SIGHAN Workshop on Chinese Language Processing. Stroudsburg: Association for Computational Linguistics, 2003: 184-187. 46 唐晓波, 谢力. 基于主题的用户兴趣模型的构建及动态更新[J]. 情报理论与实践, 2016, 39(2): 116-123. 47 胡吉明, 陈果. 基于动态LDA主题模型的内容主题挖掘与演化[J]. 图书情报工作, 2014, 58(2): 138-142. |
|
|
|