|
|
Knowledge Flow between International Patent Classification Numbers and Knowledge Spillover Measures between Technology Sectors: Based on China??s Authorized Patent Data |
Wang Gege, Liu Shulin |
School of Economics, Wuhan University of Technology, Wuhan 430000 |
|
|
Abstract The new economic growth theory emphasizes the contribution of knowledge spillovers to economic growth. However, measuring knowledge spillovers has been a major challenge for economists due to its intangibility. With the advantage of big data, this paper analyzes knowledge spillovers by building a technical spillover matrix using the data of more than 300,000 of China’s authorized inventions that are in the incoPat Global Patent Database. This matrix uses the patents’ different IPC numbers to represent the knowledge flow between different technical fields. The main IPC number indicates the source technology field, the remaining sub IPC numbers represent the receiving technology field, and the four-digit IPC number is used to divide the technical sub-fields. The research discovers the externality of the knowledge spillover effect and identifies the direction, width, and intensity of the spillover among technologies. Consequently, the heterogeneity of the knowledge spillover in different technology fields is revealed. The conclusion of this paper can provide some theoretical support to the government’s subsidy policy for technology innovation.
|
Received: 14 October 2019
|
|
|
|
1 马歇尔. 经济学原理[M]. 北京: 商务印书馆, 1964. 2 Arrow K. Economic welfare and the allocation of resources for invention[M]// The Rate and Direction of Inventive Activity: Economic and Social Factors. Princeton: Princeton University Press, 1962: 609-626. 3 Romer P M. Increasing returns and long-run growth[J]. Journal of Political Economy, 1986, 94(5): 1002-1037. 4 Krugman P. Geography and trade[M]. Cambridge: MIT Press, 1991. 5 Jaffe A B. Technological opportunity and spillovers of R&D: Evidence from firms’ patents, profits, and market value[J]. The American Economic Review, 1986, 76(5): 984-1001. 6 Luh Y H, Jiang W J, Huang S C. Trade-related spillovers and industrial competitiveness: Exploring the linkages for OECD countries[J]. Economic Modelling, 2016, 54: 309-325. 7 陈颂, 卢晨. 基于行业技术相似度的FDI技术溢出效应研究[J]. 国际贸易问题, 2019(1): 106-118. 8 梁圣蓉, 罗良文. 国际研发资本技术溢出对绿色技术创新效率的动态效应[J]. 科研管理, 2019, 40(3): 21-29. 9 Lim U. The spatial distribution of innovative activity in U.S. met-ropolitan areas: Evidence from patent data[J]. Journal of Regional Analysis & Policy, 2003, 33(2): 97-126. 10 项歌德, 朱平芳, 张征宇. 经济结构、R&D投入及构成与R&D空间溢出效应[J]. 科学学研究, 2011, 29(2): 206-214. 11 吕新军, 代春霞. 研发投入异质性与区域技术创新溢出效应[J]. 经济经纬, 2017, 34(4): 19-24. 12 朱平芳, 项歌德, 王永水. 中国工业行业间R&D溢出效应研究[J]. 经济研究, 2016, 51(11): 44-55. 13 Jaffe A B, Trajtenberg M, Henderson R. Geographic localization of knowledge spillovers as evidenced by patent citations[J]. The Quarterly Journal of Economics, 1993, 108(3): 577-598. 14 Leydesdorff L, Carley S, Rafols I. Global maps of science based on the new Web-of-Science categories[J]. Scientometrics, 2013, 94(2): 589-593. 15 Kim D H, Lee B K, Sohn S Y. Quantifying technology-industry spillover effects based on patent citation network analysis of unmanned aerial vehicle (UAV)[J]. Technological Forecasting and Social Change, 2016, 105: 140-157. 16 胡健, 印玺. 基于专利引用的技术流矩阵的分析——对石油天然气产业技术溢出效应的测度[J]. 科学学研究, 2010, 28(12): 1843-1848, 1860. 17 吴菲菲, 李睿毓, 黄鲁成, 等. 跨产业技术溢出识别与效应测度研究——以无人机技术为例[J]. 科学学与科学技术管理, 2018, 39(6): 84-98. 18 Griliches Z. Issues in assessing the contribution of research and development to productivity growth[J]. The Bell Journal of Economics, 1979, 10: 92-116. 19 林原, 马荣康, 刘凤朝. 技术流动对区域技术专业化的影响研究[J]. 科学学与科学技术管理, 2018, 39(7): 13-23. 20 Noh H, Song Y K, Lee S. Identifying emerging core technologies for the future: Case study of patents published by leading telecommunication organizations[J]. Telecommunications Policy, 2016, 40(10-11): 956-970. 21 周萌, 朱相丽. 新兴技术概念辨析及其识别方法研究进展[J]. 情报理论与实践, 2019, 42(10): 162-169. 22 郗建红, 彭爱东. 专利被引频次与专利分类跨领域相关性研究——以中国在美国授权专利为例[J]. 情报杂志, 2016, 35(4): 92-97. 23 杨中楷, 刘倩楠, 于霜. 基于专利引文网络的技术领域间关系探析[J]. 科研管理, 2011, 32(5): 149-155. 24 黄斌, 黄鲁成, 吴菲菲, 等. 度量专利表征技术的差异[J]. 情报杂志, 2015, 34(10): 34-37. 25 周磊, 杨威, 张玉峰. 基于专利挖掘的突破性创新识别框架研究[J]. 情报理论与实践, 2016, 39(9): 73-76, 46. 26 Breschi S, Lissoni F, Malerba F. Knowledge-relatedness in firm technological diversification[J]. Research Policy, 2003, 32(1): 69-87. 27 Lim H, Park Y. Identification of technological knowledge intermediaries[J]. Scientometrics, 2010, 84(3): 543-561. 28 Park H, Yoon J. Assessing coreness and intermediarity of technology sectors using patent co-classification analysis: The case of Korean national R&D[J]. Scientometrics, 2014, 98(2): 853-890. 29 Schmoch U. Concept of a technology classification for country comparison: Final report to the World Intellectual Property Organisation[R]. Karlsruhe: Fraunhofer Institute for Systems and Innovation Research, 2008. 30 Tassey G. The disaggregated technology production function: A new model of university and corporate research[J]. Research Policy, 2005, 34(3): 287-303. |
|
|
|