|
|
Theoretical Thinking on City Profile from the Perspective of Digital Space |
Ma Yaxue, Li Gang, Xie Hui, Ma Chao |
Center for Studies of Information Resources, Wuhan University, Wuhan 430072 |
|
|
Abstract The construction of smart cities can effectively improve the capability of urban governance and operation and break the dilemma of modern urban development. In this paper, we aim to explore how to use big data in urban physical, social, and cyber spaces to construct smart cities. Relying on the three-world theory to analyze the composition of urban space, the concept of urban digital space was proposed to help achieve the construction of smart cities, and city profiling was accordingly presented as a construction method of urban digital spaces and city profiles. According to the goal of constructing urban digital space, we first analyzed the concept of the city profile. Then, we illustrated how to realize the construction of city profiles through urban facet modeling and profiling with smart data. Finally, we discussed the feasible applicable fields of city profiles and analyzed three typical application scenarios in detail. The urban digital space constructed by city profiling can provide a panoramic view of the urban operating conditions, treating cities as organisms that are assisted by smart data to govern, operate, and develop, and then intelligent information services can be provided to users.
|
Received: 07 April 2018
|
|
|
|
[1] Mori K, Christodoulou A. Review of sustainability indices and indicators: Towards a new City Sustainability Index (CSI)[J]. Environmental Impact Assessment Review, 2012, 32(1): 94-106. [2] Bak1c1 T, Almirall E, Wareham J. A smart city initiative: the case of Barcelona[J]. Journal of the Knowledge Economy, 2013, 4(2): 135-148. [3] Lytras M D, Visvizi A. Who uses smart city services and what to make of it: Toward interdisciplinary smart cities research[J]. Sustainability, 2018,10(6): 1998. [4] Hashem I A T, Chang V, Anuar N B, et al. The role of big data in smart city[J]. International Journal of Information Management, 2016, 36(5): 748-758. [5] Nuaimi E A, Neyadi H A, Mohamed N, et al. Applications of big data to smart cities[J]. Journal of Internet Services & Applications, 2015, 6(1): 25. [6] Kitchin R. The real-time city? Big data and smart urbanism[J]. Geojournal, 2014, 79(1): 1-14. [7] Wang J, Chao L, Zhang X, et al. Survey of data-centric smart city[J]. Journal of Computer Research & Development, 2014, 51(2): 239-259. [8] Ang L M, Seng K P, Zungeru A, et al. Big sensor data systems for smart cities[J]. IEEE Internet of Things Journal, 2017, 4(5): 1259-1271. [9] Kousiouris G, Akbar A, Sancho J, et al. An integrated information lifecycle management framework for exploiting social network data to identify dynamic large crowd concentration events in smart cities applications[J]. Future Generation Computer Systems, 2017, 78(2): 516-530. [10] Khan M, Babar M, Ahmed S H, et al. Smart city designing and planning based on big data analytics[J]. Sustainable Cities and Society, 2017, 35: 271-279. [11] Aguilera U, Peña O, Belmonte O, et al. Citizen-centric data services for smarter cities[J]. Generation Computer Systems, 2017,76: 234-247. [12] 李国杰, 程学旗. 大数据研究: 未来科技及经济社会发展的重大战略领域——大数据的研究现状与科学思考[J]. 中国科学院院刊, 2012, 27(6): 647-657. [13] Lohr S. The age of big data[J]. New York Times, 2012, 16(4): 10-15. [14] Wang F Y. The emergence of intelligent enterprises: From CPS to CPSS[J]. IEEE Intelligent Systems, 2010, 25(4): 85-88. [15] Wang F Y. Control 5.0: from Newton to Merton in popper’s cyber-social-physical spaces[J]. IEEE/CAA Journal of Automatica Sinica, 2016, 3(3): 233-234. [16] Boschert S, Rosen R. Digital twin—The simulation aspect[M]// Mechatronic Futures. Springer International Publishing, 2016: 59-74. [17] 陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J]. 计算机集成制造系统, 2018, 24(1): 1-18. [18] 徐光祐, 陶霖密, 张大鹏, 等. 物理空间与信息空间的对偶关系[J]. 科学通报, 2006, 51(5): 610-616. [19] 徐光祐, 陶霖密, 史元春, 等. 普适计算模式下的人机交互[J]. 计算机学报, 2007, 30(7): 1041-1053. [20] Batty M. A perspective on city dashboards[J]. Regional Studies Regional Science, 2015, 2(1): 29-32. [21] Mcardle G, Kitchin R. The Dublin dashboard: Design and development of a real-time analytical urban dashboard[C]// ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016 1st International Conference on Smart Data and Smart Cities, Split, Croatia. 2016:19-25. [22] Kanter R M, Litow S S. Informed and interconnected: A Manifesto for smarter cities[D]. Harvard Business School, 2009. [23] Albino V, Berardi U, Dangelico R M. Smart cities: Definitions, dimensions, performance, and initiatives[J]. Journal of Urban Technology, 2015, 22(1): 3-21. [24] Giffinger R, Gudrun H, Gudrun, et al. Smart cities ranking: an effective instrument for the positioning of the cities?[J]. Architecture City & Environment, 2010, 6(12): 7-26. [25] Lombardi P, Giordano S, Farouh H, et al. Modelling the smart city performance[J]. Innovation the European Journal of Social Science Research, 2012, 25(2): 137-149. [26] 赖华东. 城市经济发展评价指标体系研究[J]. 产业经济评论, 2013(9): 26-32. [27] 祝智庭, 余平. 智慧城市教育公共服务评价指标体系研制[J]. 开放教育研究, 2017, 23(6): 49-59. [28] 陈铭, 王乾晨, 张晓海, 等. “智慧城市”评价指标体系研究——以“智慧南京”建设为例[J]. 城市发展研究, 2011(5): 84-89. [29] 李贤毅, 邓晓宇. 智慧城市评价指标体系研究[J]. 电信网技术, 2011(10): 43-47. [30] 王思雪, 郑磊. 国内外智慧城市评价指标体系比较[J]. 电子政务, 2013(1): 92-100. [31] Sheth A. Transforming Big Data into Smart Data: Deriving value via harnessing Volume, Variety, and Velocity using semantic techniques and technologies[C]// IEEE 30th International Conference on Data Engineering. IEEE, 2014: 2. [32] Zeng M L. Smart data for digital humanities[J]. Journal of Data and Information Science, 2017, 2(1): 1-12. [33] 人民网. 习近平:实施国家大数据战略加快建设数字中国[EB/OL]. [2018-06-09]. http://politics.people.com.cn/n1/2017/1209/c1001-29696291.html. [34] 李纲. 实施国家大数据战略 建设数字中国[N/OL]. 光明日报, 2018-01-28. [2018-06-09]. http://news.gmw.cn/2018-01/28/content_27478633.htm. [35] 杜廷尧, 安璐, 李纲. 基于信息流的城市智慧应急响应机制[J]. 信息资源管理学报, 2016(2): 41-50. [36] 李纲, 李阳. 智慧城市应急决策情报体系构建研究[J]. 中国图书馆学报, 2016, 42(3): 39-54. |
|
|
|