|
|
Negative Emotions of Online Users’ Analysis Based on Bidirectional Long Short-Term Memory |
Wu Peng1,2, Ying Yang2, Shen Si1,2 |
1. School of Economics and Management, Nanjing University of Science and Technology, Nanjing 210094; 2. Jiangsu Collaborative Innovation Center of Social Safety Science and Technology, Nanjing 210094 |
|
|
Abstract The negative emotions of netizens are of great significance in the analysis of network public opinions; however, existing research lacks a multiclassification method to identify automatically the negative emotions of online users in massive short text. This study uses word embedding to study the features of the word sequence, learning the sentiment-encoded word vector by increasing the emotional features of the context. The bidirectional long short-term memory (LSTM) model is trained to obtain the online users’ negative-emotion recognition model, and the online users’ anger, sadness, and fear are identified on the basis of judging the online users’ sentiment polarities. Then, the case data are compared with experimental results of models such as support vector machine (SVM), LSTM, and convolutional neural network (CNN). The experimental results show that sentiment-encoded word embedding is more suitable than word embedding for sentiment analysis. The bidirectional long short-term memory model has good sentiment analysis performance. Classifying the negative emotions of the netizen based on the identification of sentiment polarities is better than directly distinguishing negative emotions.
|
Received: 26 March 2018
|
|
|
|
[1] Choi Y, Lin Y.Consumer Responses to Mattel Product Recalls Posted on Online Bulletin Boards: Exploring Two Types of Emotion[J]. Journal of Public Relations Research, 2009, 21(2): 198-207. [2] 李勇, 蔡梦思, 邹凯, 等. 社交网络用户线上线下情感传播差异及影响因素分析-以“成都女司机被打”事件为例[J]. 情报杂志, 2016, 35(6): 80-85. [3] Silva N F F D, Hruschka E R, Hruschka E R. Tweet sentiment analysis with classifier ensembles[J]. Decision Support Systems, 2014, 66: 170-179. [4] 肖宝, 李璞, 胡娇娇, 等. 基于潜在语义与图结构的微博语义检索[J]. 计算机工程, 2017, 43(6): 182-188. [5] 丁晟春, 吴靓婵媛, 李红梅. 基于SVM的中文微博观点倾向性识别[J]. 情报学报, 2016, 35(12): 1235-1243. [6] Zhang D W, Xu H, Su Z C, et al.Chinese comments sentiment classification based on word2vec and SVM perf[J]. Expert Systems with Applications, 2015, 42(4): 1857-1863. [7] Collobert R, Weston J, Karlen M, et al.Natural Language Processing (Almost) from Scratch[J]. Journal of Machine Learning Research, 2011, 12(1): 2493-2537. [8] Maas A L, Daly R E, Pham P T, et al.Learning word vectors for sentiment analysis[C]// Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2011: 142-150. [9] Jiang F, Liu Y Q, Luan H B, et al.Microblog sentiment analysis with emoticon space model[C]// Proceedings of the Chinese National Conference on Social Media Processing. Heidelberg: Springer, 2014, 489: 76-87. [10] 何炎祥, 孙松涛, 牛菲菲, 等. 用于微博情感分析的一种情感语义增强的深度学习模型[J]. 计算机学报, 2017, 40(4): 773-790. [11] Wang X, Liu Y C, Sun C J, et al.Predicting polarities of tweets by composing word embeddings with long short-term memory[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2015: 1343-1353. [12] Kim Y.Convolutional neural networks for sentence classification[J/OL]. [2014-09-03].https://arxiv.org /pdf/ 1408.5882. [13] Xu J C, Chen D L, Qiu X P, et al.Cached long short-term memory neural networks for document-level sentiment classification [J/OL]. [2016-10-17].https://arxiv.org/pdf/1610.04989. [14] Hochreiter S, Schmidhuber J.Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780. [15] Schuster M, Paliwal K K.Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11): 2673-2681. [16] Zhang S X, Wei Z L, Wang Y, et al.Sentiment analysis of Chinese micro-blog text based on extended sentiment dictionary[J]. Future Generation Computer Systems, 2018, 81: 395-403. [17] Öztürk N, Ayvaz S.Sentiment analysis on Twitter: A text mining approach to the Syrian Refugee Crisis[J]. Telematics & Informatics, 2017, 35(1): 136-147. [18] Poria S, Peng H, Hussain A, et al.Ensemble application of convolutional neural networks and multiple kernel learning for multimodal sentiment analysis[J]. Neurocomputing, 2017, 261: 217-230. [19] 周清清, 章成志. 基于迁移学习微博情绪分类研究-以H7N9微博为例[J]. 情报学报, 2016, 35(4): 339-348. [20] 曹宇, 王名扬, 贺惠新. 情感词典扩充的微博文本多元情感分类研究[J]. 情报杂志, 2016, 35(10): 185-189. [21] Zhang L, Wang S, Liu B.Deep learning for sentiment analysis: A survey[OL]. [2018-01-30].https://arxiv.org/pdf/1801.07883. [22] Bengio Y, Ducharme R, Vincent P, et al.A neural probabilistic language model[J]. Journal of Machine Learning Research, 2003, 3: 1137-1155. [23] Mikolov T, Sutskever I, Chen K, et al.Distributed representations of words and phrases and their compositionality[J]. Advances in Neural Information Processing Systems, 2013, 26: 3111-3119. [24] Zhang Z H, Wu G S, Lan M.ECNU: Multi-level sentiment analysis on twitter using traditional linguistic features and word embedding features[C]// Proceedings of the 9th International Workshop on Semantic Evaluation. Stroudsburg: Association for Computational Linguistics, 2015: 561-567. [25] Tang D Y, Wei F R, Yang N, et al.Learning sentiment-specific word embedding for Twitter sentiment classification[C]// Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2014: 1555-1565. [26] Yu L C, Wang J, Lai K R, et al.Refining word embeddings for sentiment analysis[C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2017: 534-539. [27] Mishra A, Tamilselvam S, Dasgupta R, et al.Cognition-cognizant sentiment analysis with multitask subjectivity summarization based on annotators’ gaze behavior[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. AAAI Press, 2018: 1631-1638. [28] Balikas G, Moura S, Amini M R.Multitask learning for fine-grained Twitter sentiment analysis[C]// Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2017: 1005-1008. [29] Baziotis C, Pelekis N, Doulkeridis C.DataStories at SemEval-2017 Task 4: Deep LSTM with attention for message-level and topic-based sentiment analysis[C]// Proceedings of the 11th International Workshop on Semantic Evaluations. Stroudsburg: Association for Computational Linguistics, 2017: 747-754. [30] Shen Q Z, Wang Z J, Sun Y R.Sentiment analysis of movie reviews based on CNN-BLSTM[C]// Proceedings of the International Conference on Intelligence Science. Cham: Springer, 2017, 510: 164-171. [31] Chen T, Xu R F, He Y L, et al.Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN[J]. Expert Systems with Applications, 2017, 72: 221-230. [32] Yoon J, Kim H.Multi-channel lexicon integrated CNN-BiLSTM models for sentiment analysis[C]// Proceedings of the 29th Conference on Computational Linguistics and Speech Processing, 2017: 244-253. |
|
|
|