|
|
Concerns and Evolutionary Patterns of Stakeholders on Social Media Platforms during Public Health Emergencies |
An Lu1,2, Du Tingyao2, Li Gang1, Yu Chuanming3 |
1. Center for Studies of Information Resources, Wuhan University, Wuhan 430072; 2. School of Information Management, Wuhan University, Wuhan 430072; 3. School of Information and Safety Engineering,Zhongnan University of Economics and Law, Wuhan 430073 |
|
|
Abstract In this study, a system of stakeholders of public health emergencies is constructed based on stakeholder theory, which consists of thirteen types. The life cycle of emergencies is divided into five phases, based on life cycle theory. The Latent Dirichlet Allocation (LDA) model is used to analyze and compare the similarities and differences of topics about the Middle East Respiratory Syndrome (MERS) outbreak on Sina Weibo and WeChat platforms. The concerns and evolutionary patterns of stakeholders in the different life cycle phases are characterized and summarized. The findings can help public health emergency administrators take corresponding measures for specific populations and alleviate the negative impact of public emergencies.
|
Received: 27 October 2017
|
|
|
|
[1] 李娟. 公共卫生突发事件应急管理对策研究[D]. 成都: 电子科技大学, 2006. [2] Starbird K, Palen L.“Voluntweeters”: Self-organizing by digital volunteers in times of crisis[C]// Proceedings of the the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM Press, 2011: 1071-1080. [3] 张玥, 孙霄凌, 朱庆华. 突发公共事件舆情传播特征与规律研究——以新浪微博和新浪新闻平台为例[J]. 情报杂志, 2014, 33(4): 90-95. [4] 邵昳灵. 利益相关者博弈视角下应急响应策略研究[D]. 上海: 上海交通大学, 2014. [5] Ludwig T, Kotthaus C, Reuter C, et al.Situated crowdsourcing during disasters: Managing the tasks of spontaneous volunteers through public displays[J]. International Journal of Human- Computer Studies, 2017, 102: 103-121. [6] 沙勇忠, 刘红芹. 公共危机的利益相关者分析模型[J]. 科学经济社会, 2009, 27(1): 58-61. [7] 任立肖, 张亮. 食品安全突发事件网络舆情的分析模型——基于利益相关者的视角[J]. 图书馆学研究, 2014(1): 65-70. [8] 王轩. 利益相关者理论视角下的高校危机传播研究[D]. 长沙: 中南大学, 2014. [9] 郑昌兴, 苏新宁, 刘喜文. 突发事件网络舆情分析模型构建——基于利益相关者视阈[J]. 情报杂志, 2015, 34(4): 71-75. [10] 邓三鸿, 刘喜文, 蒋勋. 基于利益相关者理论的突发事件案例知识库构建研究[J]. 图书与情报, 2015(3): 1-8. [11] Maltoni C, Rossi C, Sánchez G.Improving resilience to emergencies through advanced cyber technologies: the I-REACT project[J]. GEOmedia, 2017, 21(3): 18-22. [12] Fink S.Crisis management: Planning for the Inevitable[M]. New York: American Management Association, 1986: 20. [13] Burkholder B, Toole M.Evolution of complex disasters[J]. Lancet, 1995, 346(8981): 1012-1015. [14] Robert H.Emergency management [M]. Beijing: China Citric Press, 2004: 22. [15] Bongiovanni I, Leo E, Ritrovato M, et al.Implementation of best practices for emergency response and recovery at a large hospital: A fire emergency case study[J]. Safety Science, 2017, 96: 121-131. [16] 赵岩, 王利明, 杨菁. 公共危机事件网络舆情生命周期特征分析及对策研究[J]. 经济研究参考, 2015(16): 57-69. [17] 梁小艳, 庄亚明. 基于贝叶斯网络的突发事件信息生命阶段研判方法[J]. 情报科学, 2016, 34(4): 35-39. [18] 卢文刚, 舒迪远. 基于突发事件生命周期理论视角的城市公交应急管理研究——以广州“7·15”公交纵火案为例[J]. 广州大学学报(社会科学版), 2016, 15(4): 19-27. [19] 刘志明, 刘鲁. 面向突发事件的民众负面情绪生命周期模型[J]. 管理工程学报, 2013, 27(1): 15-21. [20] 贾亚敏, 安璐, 李纲. 城市突发事件网络信息传播时序变化规律研究[J]. 情报杂志, 2015, 34(4): 91-96. [21] Knuth D, Szymczak H, Kuectiekbalaban P, et al.Social media in emergencies: How useful can they be[C]// Proceedings of the 2016 3rd International Conference on Information and Communication Technologies for Disaster Management. IEEE, 2016: 22-28. [22] Wang X R, McCallum A. Topics over time: a non-Markov continuous-time model of topical trends[C//. Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, 2006: 424-433. [23] Hall D, Jurafsky D, Manning C D.Studying the history of ideas using topic models[C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2008: 363-371. [24] Blei D M, Lafferty J D.Dynamic topic models[C]// Proceedings of the 23rd International Conference on Machine Learning. New York: ACM Press, 2006: 113-120 [25] 吴小兰, 章成志. 基于DTM-LPA的突发事件话题演化方法研究——以H7N9微博为例[J]. 图书与情报, 2015(3): 9-16. [26] 安璐, 杜廷尧, 余传明, 等. 突发公共卫生事件的微博主题演化模式和时序趋势——以Twitter和Weibo的埃博拉微博为例[J[. 情报资料工作, 2016(5): 44-52. [27] Sherchan W, Pervin S, Butler C J, et al.Harnessing Twitter and Instagram for disaster management[J]. IBM Journal of Research and Development, 2017, 61(6): 1-12. [28] 吉顺权, 李卓卓. 基于信息生命周期的微博舆情规律分析——以食品安全事件为例[J]. 电子政务, 2015(5): 58-65. [29] 张培晶, 宋蕾. 基于LDA的微博文本主题建模方法研究述评[J]. 图书情报工作, 2012, 56(24): 120-126. [30] iebaR中文分词文档[EB/OL]. [2017-04-23]. http://qinwenfeng. com/jiebaR/index.html. [31] Sievert C, Shirley K E.LDAvis: A method for visualizing and interpreting topics[C]// Proceedings of the Workshop on Interactive Language Learning, Visualization, and Interfaces. Stroudsburg: Association for Computational Linguistics, 2014: 63-70. |
|
|
|