|
|
The Emergence of Collective Intelligence in the Public Opinion Environment during Public Health Emergencies |
An Ning1, An Lu1,2 |
1.School of Information Management, Wuhan University, Wuhan 430072 2.Center for Studies of Information Resources, Wuhan University, Wuhan 430072 |
|
|
Abstract This research proposes an approach to extract collective intelligence from public opinion during public health emergencies, and reveals the pattern and rule of the emergence of collective intelligence. Taking the topic of herd immunity as an example, we extract the triples contained in microblog posts and comments to structurally represent the public’s knowledge by using the Relation Extraction with Dependency Parsing method. In this study, we explore the pattern and rule of the emergence of collective intelligence based on the triplets of public opinion and network topology. The research results show that the method proposed in this study can extract collective intelligence from public opinion during public health emergencies. Concurrently, we found the heat of public opinion and collective intelligence does not increase in a linear and steady fashion. There are critical phenomena and leaping forward characteristics with the development of emergencies. Public opinion knowledge network is limited and has a scale-free network structure. Collective intelligence mainly concentrates in microblog posts with dynamic properties.
|
Received: 02 November 2020
|
|
|
|
1 戴旸, 周磊. 国外“群体智慧”研究述评[J]. 图书情报知识, 2014(2): 120-127. 2 Woolley A W, Chabris C F, Pentland A, et al. Evidence for a collective intelligence factor in the performance of human groups[J]. Science, 2010, 330(6004): 686-688. 3 兰?费雪. 完美的群体: 如何掌控群体智慧的力量[M]. 邓逗逗, 译. 杭州: 浙江人民出版社, 2013: 1-34. 4 Leimeister J M. Collective intelligence[J]. Business & Information Systems Engineering, 2010, 2(4): 245-248. 5 Vivacqua A S, Borges M R S. Collective intelligence for the design of emergency response[C]// Proceedings of the 2010 14th International Conference on Computer Supported Cooperative Work in Design. IEEE, 2010: 623-628. 6 张海涛, 李佳玮, 刘伟利, 等. 重大突发事件事理图谱构建研究[J]. 图书情报工作, 2021, 65(18): 133-140. 7 张海涛, 周红磊, 李佳玮, 等. 信息不完全状态下重大突发事件态势感知研究[J]. 情报学报, 2021, 40(9): 903-913. 8 Yuan F X, Li M, Liu R, et al. Social media for enhanced understanding of disaster resilience during Hurricane Florence[J]. International Journal of Information Management, 2021, 57: 102289. 9 Bunker D. Who do you trust? The digital destruction of shared situational awareness and the COVID-19 infodemic[J]. International Journal of Information Management, 2020, 55: 102201. 10 林燕霞, 谢湘生, 张德鹏. 复杂交互行为影响下的网络舆情演化分析[J]. 中国管理科学, 2020, 28(1): 212-221. 11 安璐, 吴林. 融合主题与情感特征的突发事件微博舆情演化分析[J]. 图书情报工作, 2017, 61(15): 120-129. 12 吴江, 侯绍新, 靳萌萌, 等. 基于LDA模型特征选择的在线医疗社区文本分类及用户聚类研究[J]. 情报学报, 2017, 36(11): 1183-1191. 13 An L, Yu C M, Lin X, et al. Topical evolution patterns and temporal trends of microblogs on public health emergencies: an exploratory study of Ebola on Twitter and Weibo[J]. Online Information Review, 2018, 42(6): 821-846. 14 Taboada M, Brooke J, Tofiloski M, et al. Lexicon-based methods for sentiment analysis[J]. Computational Linguistics, 2011, 37(2): 267-307. 15 吴鹏, 刘恒旺, 沈思. 基于深度学习和OCC情感规则的网络舆情情感识别研究[J]. 情报学报, 2017, 36(9): 972-980. 16 Yu C, Chai Y T, Liu Y. Collective intelligence: from the enlightenment to the crowd science[C]// Proceedings of the 2nd International Conference on Crowd Science and Engineering. New York: ACM Press, 2017: 111-115. 17 MacKay C. Extraordinary popular delusions and the madness of crowds[M]. New York: Farrar, Straus and Giroux, 1841: 18-30. 18 Galton F. Vox populi[J]. Nature, 1907, 75(1949): 450-451. 19 Woolley A W, Aggarwal I, Malone T W. Collective intelligence and group performance[J]. Current Directions in Psychological Science, 2015, 24(6): 420-424. 20 黄晓斌, 周珍妮. Web 2.0环境下群体智慧的实现问题[J]. 图书情报知识, 2011(6): 113-119. 21 Yuan W Y, Chen Y, Wang R, et al. Collective intelligence in knowledge management[C]// Proceedings of the Research and Practical Issues of Enterprise Information Systems II. Boston: Springer, 2007: 651-655. 22 易明, 冯翠翠, 莫富传, 等. 基于群体智慧理论的协同标注信息行为机理研究——以豆瓣电影标签数据为例[J]. 情报学报, 2021, 40(1): 101-114. 23 张海涛, 李佳玮, 周红磊, 等. 重大突发事件演变机制: 认知框架与理论方法[J]. 情报学报, 2021, 40(9): 914-923. 24 Garcia K, Berton L. Topic detection and sentiment analysis in Twitter content related to COVID-19 from Brazil and the USA[J]. Applied Soft Computing, 2021, 101: 107057. 25 Middleton S E, Middleton L, Modafferi S. Real-time crisis mapping of natural disasters using social media[J]. IEEE Intelligent Systems, 2014, 29(2): 9-17. 26 Knox J A, Rackley J A, Black A W, et al. Tornado debris characteristics and trajectories during the 27 April 2011 super outbreak as determined using social media data[J]. Bulletin of the American Meteorological Society, 2013, 94(9): 1371-1380. 27 Maru C, Enoki M, Nakao A, et al. QoE control of network using collective intelligence of SNS in large-scale disasters[C]// Proceedings of the 2016 IEEE International Conference on Computer and Information Technology. IEEE, 2016: 57-64. 28 Fan C, Zhang C, Yahja A, et al. Disaster City Digital Twin: a vision for integrating artificial and human intelligence for disaster management[J]. International Journal of Information Management, 2021, 56: 102049. 29 Diakou C M, Kokkinaki A. Assessment of maturity levels in dealing with low probability high impact events[C]// Proceedings of the 9th European Conference on IS Management and Evaluation. Academic Conferences and Publishing International Limited, 2015: 61-67. 30 Miller N, Garnier S, Hartnett A T, et al. Both information and social cohesion determine collective decisions in animal groups[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(13): 5263-5268. 31 李明耀, 杨静. 基于依存分析的开放式中文实体关系抽取方法[J]. 计算机工程, 2016, 42(6): 201-207. 32 NewmanM E J. 网络科学引论[M]. 郭世泽, 陈哲, 译. 北京: 电子工业出版社, 2014: 80-90. 33 汪小帆, 李翔, 陈关荣. 网络科学导论[M]. 北京: 高等教育出版社, 2012: 50-100. 34 胡昌平, 陈果. 领域知识网络的层次结构与微观形态探证——基于k-core层次划分的共词分析方法[J]. 情报学报, 2014, 33(2): 130-139. 35 安宁, 孙熊兰, 滕广青, 等. 领域知识群落的演变模式与知识传承[J]. 情报资料工作, 2019, 40(4): 15-25. |
|
|
|