|
|
Potential Scientific Collaborator Recommendation Model Utilizing Dynamic Research Interest and Social Trust |
Zhong Yuansheng1,2,3, Gao Chengzhen1,2, Zhu Wenqiang3 |
1.School of Information Management, Jiangxi University of Finance and Economics, Nanchang 330013 2.Key Laboratory of Data Science in Finance and Economics, Jiangxi University of Finance and Economics, Nanchang 330013 3.School of Software & Internet of Things Engineering, Jiangxi University of Finance and Economics, Nanchang 330013 |
|
|
Abstract Discovering potential collaborators automatically from massive data is a hot topic in scientific collaboration prediction. Considering that research interests change over time and people with social relationships are more likely to collaborate, a potential scientific collaborator recommendation model “SimTrustRec” is proposed, which integrates dynamic research interest and academic social trust. First, the Latent Dirichlet Allocation model is used to learn the topic distribution of published papers, and dynamic research interests of scholars are mined to calculate the similarity of research interests between two scholars. Second, an academic social network is constructed based on the co-occurrence relationship of scholars and units in papers. Direct academic social trust values are calculated and indirect academic social trust values are then calculated based on the transitivity of social trust. Finally, the possibility of potential collaboration between two scholars is calculated by combining research interest similarity and academic social trust value, and a list of potential collaborators is generated. Experimental results using ArnetMiner datasets demonstrate that the proposed method achieves better performance in terms of recall, hit rate, and mean reciprocal rank compared to existing methods.
|
Received: 14 October 2022
|
|
|
|
1 Katz J S, Martin B R. What is research collaboration?[J]. Research Policy, 1997, 26(1): 1-18. 2 秦红武, 赵猛, 马秀琴, 等. 基于学术水平聚类的科研合作者推荐模型[J]. 计算机工程与应用, 2022, 58(21): 172-181. 3 刘先红, 李纲. 科研社交网络的推荐系统对比分析[J]. 图书情报工作, 2016, 60(9): 116-122. 4 刘建生, 游真旭, 乐光学, 等. 网络信任研究进展[J]. 计算机科学, 2018, 45(11): 13-28, 36. 5 Lopes G R, Moro M M, Wives L K, et al. Collaboration recommendation on academic social networks[C]// Proceedings of the International Conference on Conceptual Modeling Workshops. Heidelberg: Springer, 2010: 190-199. 6 邓少伟, 罗泽, 李树仁, 等. 基于论文共同作者学术关系的学者推荐系统[J]. 计算机工程, 2013, 39(2): 12-17. 7 刘萍, 郑凯伦, 邹德安. 基于LDA模型的科研合作推荐研究[J]. 情报理论与实践, 2015, 38(9): 79-85. 8 Du G Y, Liu Y C, Yu J J. Scientific users? interest detection and collaborators recommendation[C]// Proceedings of the 2018 IEEE Fourth International Conference on Big Data Computing Service and Applications. Piscataway: IEEE, 2018: 72-79. 9 Kong X J, Jiang H Z, Yang Z, et al. Exploiting publication contents and collaboration networks for collaborator recommendation[J]. PLoS One, 2016, 11(2): e0148492. 10 Yan E J, Guns R. Predicting and recommending collaborations: an author-, institution-, and country-level analysis[J]. Journal of Informetrics, 2014, 8(2): 295-309. 11 吕伟民, 王小梅, 韩涛. 结合链路预测和ET机器学习的科研合作推荐方法研究[J]. 数据分析与知识发现, 2017, 1(4): 38-45. 12 Xia F, Chen Z, Wang W, et al. MVCWalker: random walk-based most valuable collaborators recommendation exploiting academic factors[J]. IEEE Transactions on Emerging Topics in Computing, 2014, 2(3): 364-375. 13 Zhou X, Ding L X, Li Z K, et al. Collaborator recommendation in heterogeneous bibliographic networks using random walks[J]. Information Retrieval Journal, 2017, 20(4): 317-337. 14 张金柱, 于文倩, 刘菁婕, 等. 基于网络表示学习的科研合作预测研究[J]. 情报学报, 2018, 37(2): 132-139. 15 余传明, 林奥琛, 钟韵辞, 等. 基于网络表示学习的科研合作推荐研究[J]. 情报学报, 2019, 38(5): 500-511. 16 林原, 王凯巧, 刘海峰, 等. 网络表示学习在学者科研合作预测中的应用研究[J]. 情报学报, 2020, 39(4): 367-373. 17 Pradhan T, Pal S. A multi-level fusion based decision support system for academic collaborator recommendation[J]. Knowledge-Based Systems, 2020, 197: 105784. 18 Chen J, Wang X, Zhao S, et al. Content-enhanced network embedding for academic collaborator recommendation[J]. Complexity, 2021, 2021: Article ID 7035467. 19 Du O X, Li Y. Academic collaborator recommendation based on attributed network embedding[J]. Journal of Data and Information Science, 2022, 7(1): 37-56. 20 熊回香, 顾佳云, 代沁泉, 等. 基于用户相似度与信任度的虚拟学术社区中学者推荐研究[J]. 情报科学, 2022, 40(2): 74-81. 21 Blei D M, Ng A Y, Jordan M I. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022. 22 Ding Y, Li X. Time weight collaborative filtering[C]// Proceedings of the 14th ACM International Conference on Information and Knowledge Management. New York: ACM Press, 2005: 485-492. 23 Tang J, Zhang J, Yao L M, et al. ArnetMiner: extraction and mining of academic social networks[C]// Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2008: 990-998. 24 Adamic L A, Adar E. Friends and neighbors on the web[J]. Social Networks, 2003, 25(3): 211-230. 25 Tang J, Qu M, Wang M Z, et al. LINE: large-scale information network embedding[C]// Proceedings of the 24th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2015: 1067-1077. |
|
|
|