|
|
Research on Fine-Grained Technology Opportunity Analysis Based on Patent Text Mining |
Wu Keye1,2, Sun Jianjun1,2, Xie Ziyue1 |
1.School of Information Management, Nanjing University, Nanjing 210023 2.Laboratory for Data Intelligence and Cross-Innovation of Nanjing University, Nanjing 210023 |
|
|
Abstract In the new round of scientific and technological revolution and industrial transformation, the strategic position of technology opportunity analysis in R&D management and corporate decision-making is growing. However, the accuracy of technology opportunity analysis based on traditional link prediction indicators has reached a bottleneck, the stubborn expertise can hardly cope with the dynamics and complexity of technological innovation, and fine-grained technical opportunity identification and analysis are difficult to realize. As a result, this study proposes a fine-grained technical opportunity analysis framework based on patent text mining that combines patent text mining and the graph neural network link prediction method and divides technology opportunity analysis into three research subtasks: knowledge network construction and evolution analysis, element link prediction and technology opportunity assessment, and screening. An empirical study in the field of computer vision shows that the knowledge network built using multi-dimensional keyword features can fully present the knowledge panorama of cross-fields, and the combination of complex network indicators and time series can further reveal the context of technological development and provide direction for subsequent technological opportunity analysis guidance. The BERT model combined with the graph neural network method is suitable for the knowledge element link prediction task of each technology life cycle, and it shows higher accuracy and robustness than traditional prediction indicators. Following a comparison and evaluation with multi-source technical reports, it is confirmed that the nine technical opportunities based on this framework are in line with the current development of computer vision technology and have practical R&D value.
|
Received: 16 September 2022
|
|
|
|
1 郭俊芳. 基于语义挖掘的技术创新路径分析与评价方法研究[D]. 北京: 北京理工大学, 2016. 2 Feng L J, Niu Y X, Liu Z F, et al. Discovering technology opportunity by keyword-based patent analysis: a hybrid approach of morphology analysis and USIT[J]. Sustainability, 2020, 12(1): 136. 3 任海英, 赵育慧, 于立婷. 基于知识网络的科学研究机会发现的机理和应用[J]. 情报理论与实践, 2018, 41(11): 89-95. 4 Arthur W B. The nature of technology: what it is and how it evolves[M]. New York: Free Press, 2009. 5 张振刚, 罗泰晔. 基于知识组合理论的技术机会发现[J]. 科研管理, 2020, 41(8): 220-228. 6 Lee C Y. A review of data analytics in technological forecasting[J]. Technological Forecasting and Social Change, 2021, 166: 120646. 7 Cho Y, Han Y J, Hwang J, et al. Identifying technology opportunities for electric motors of railway vehicles with patent analysis[J]. Sustainability, 2021, 13(5): 2424. 8 Ren H Y, Zhao Y H. Technology opportunity discovery based on constructing, evaluating, and searching knowledge networks[J]. Technovation, 2021, 101: 102196. 9 韩晓彤, 朱东华, 汪雪锋. 科学推动下技术机会发现方法研究[J]. 图书情报工作, 2022, 66(10): 19-32. 10 Kim B, Gazzola G, Yang J, et al. Two-phase edge outlier detection method for technology opportunity discovery[J]. Scientometrics, 2017, 113(1): 1-16. 11 Han X T, Zhu D H, Wang X F, et al. Technology opportunity analysis: combining SAO networks and link prediction[J]. IEEE Transactions on Engineering Management, 2021, 68(5): 1288-1298. 12 Tshitoyan V, Dagdelen J, Weston L, et al. Unsupervised word embeddings capture latent knowledge from materials science literature[J]. Nature, 2019, 571(7763): 95-98. 13 任海英, 王倩. 技术机会发现方法的研究现状、趋势和问题[J]. 情报杂志, 2020, 39(4): 51-59. 14 苏娜平, 谭宗颖. 技术机会分析方法研究综述与展望[J]. 情报理论与实践, 2020, 43(11): 179-186. 15 Han X T, Zhu D H, Wang X F, et al. Discovering technology opportunities based on the linkage between technology and business areas: matching patents and trademarks[J]. Technology Analysis & Strategic Management, 2023, 35(10): 1324-1340. 16 龚惠群, 刘琼泽, 黄超. 机器人产业技术机会发现研究——基于专利文本挖掘[J]. 科技进步与对策, 2014, 31(5): 70-74. 17 Lee S, Yoon B, Park Y. An approach to discovering new technology opportunities: keyword-based patent map approach[J]. Technovation, 2009, 29(6/7): 481-497. 18 Rodriguez A, Tosyali A, Kim B, et al. Patent clustering and outlier ranking methodologies for attributed patent citation networks for technology opportunity discovery[J]. IEEE Transactions on Engineering Management, 2016, 63(4): 426-437. 19 翟东升, 郭程, 张杰, 等. 采用异常检测的技术机会识别方法研究[J]. 现代图书情报技术, 2016(10): 81-90. 20 Ena O, Mikova N, Saritas O, et al. A methodology for technology trend monitoring: the case of semantic technologies[J]. Scientometrics, 2016, 108(3): 1013-1041. 21 Shibata N, Kajikawa Y, Sakata I. Extracting the commercialization gap between science and technology—case study of a solar cell[J]. Technological Forecasting and Social Change, 2010, 77(7): 1147-1155. 22 黄鲁成, 王静静, 李欣, 等. 基于论文和专利的钙钛矿太阳能电池的技术机会分析[J]. 情报学报, 2016, 35(7): 686-695. 23 Lee J, Ko N, Yoon J, et al. An approach for discovering firm-specific technology opportunities: application of link prediction to F-term networks[J]. Technological Forecasting and Social Change, 2021, 168: 120746. 24 翟东升, 刘鹤, 张杰, 等. 一种基于链路预测的技术机会挖掘方法[J]. 情报学报, 2016, 35(10): 1090-1100. 25 Wu Y W, Ji Y J, Gu F. Identifying firm-specific technology opportunities in a supply chain: link prediction analysis in multilayer networks[J]. Expert Systems with Applications, 2023, 213: 119053. 26 Adamic L A, Adar E. Friends and neighbors on the web[J]. Social Networks, 2003, 25(3): 211-230. 27 Kipf T N, Welling M. Variational graph auto-encoders[OL]. (2016-11-21). https://browse.arxiv.org/pdf/1611.07308.pdf. 28 李晓, 马洁, 贺福初, 等. 神经网络自编码器算法在癌症信息学研究中的应用[J]. 生物工程学报, 2021, 37(7): 2393-2404. 29 巨秉熠. 基于图神经网络预测miRNA-疾病关联关系[D]. 西安: 西安电子科技大学, 2021. 30 李方, 吴国栋, 涂立静, 等. 图自编码器推荐研究综述[J]. 计算机工程与科学, 2022, 44(2): 335-344. 31 张伟斌, 张蒲璘, 苏子毅, 等. 基于自注意力机制与图自编码器的路网交通流数据修复模型[J]. 交通运输系统工程与信息, 2021, 21(4): 90-98. 32 赵超, 谢天, 辛国容, 等. 基于Seq2Seq自编码器模型的交通事故实时检测与评价[J]. 控制与决策, 2022, 37(8): 2141-2148. 33 王竟成, 张勇, 胡永利, 等. 基于图卷积网络的交通预测综述[J]. 北京工业大学学报, 2021, 47(8): 954-970. 34 Lee P C, Su H N, Chan T Y. Assessment of ontology-based knowledge network formation by vector-space model[J]. Scientometrics, 2010, 85(3): 689-703. 35 Rose S, Engel D, Cramer N, et al. Automatic keyword extraction from individual documents[M]// Text Mining: Applications and Theory. Hoboken: John Wiley & Sons, 2010: 1-20. 36 Sharma P, Li Y B. Self-supervised contextual keyword and keyphrase retrieval with self-labelling[OL]. (2019-08-06). https://doi.org/10.20944/preprints201908.0073.v1. 37 AIIA联盟. AI领域专利检索式[EB/OL]. [2022-09-01]. https://gitee.com/AIIAIP/AIPatentSearch. 38 于俊婷, 何宏业, 刘伍颖, 等. ROUGE-SN: 基于跨越N元语法的机器翻译评测方法[J]. 数码设计, 2017, 6(3): 1-5. 39 梁宏, 黎塔. 基于N元文法的领域语法语料扩展算法[C]// 2016年全国声学学术会议论文集. 北京: 中国声学学会, 2016: 603-606. 40 Smith L N. Cyclical learning rates for training neural networks[C]// Proceedings of the 2017 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2017: 464-472. 41 中国移动研究院. 计算机视觉研究报告[R/OL]. (2021-12-22). https://www.digitalelite.cn/h-nd-1984.html. 42 房建武. 计算机视觉发展报告[R/OL]. (2019-04-28). https://zhuanlan.zhihu.com/p/64104497. 43 CCF计算机视觉专委会. 未来5~10年计算机视觉发展趋势[EB/OL]. (2020-05-21). http://blog.itpub.net/29829936/viewspace-2693424/. 44 中国信息通信研究院, 华为技术有限公司, 京东方科技集团股份有限公司. 虚拟(增强)现实白皮书[R/OL]. (2021-03-01). http://www.caict.ac.cn/kxyj/qwfb/bps/202103/t20210330_372624.htm. 45 中国信息通信研究院. 全球自动驾驶战略与政策观察——自动驾驶开启商业化元年[R/OL]. (2022-01-01). http://www.caict.ac.cn/kxyj/qwfb/ztbg/202201/t20220126_396207.htm. 责任编辑 冯家琪) |
|
|
|