|
|
Emotion Prediction of Network Public Opinions Based on the Deviation Rules Markov Model |
Shi Wei1,2, Xue Guangcong2, He Shaoyi3 |
1.School of Economics and Management, Zhejiang Ocean University, Zhoushan 316022 2.School of Information Engineering, Huzhou University, Huzhou 313000 3.College of Business and Public Administration, California State University, San Bernardino, San Bernardino 91708 |
|
|
Abstract Using sentiment analysis technology, the evolution of online public opinion can be predicted from the perspective of emotion transfer in short microblog comments. In this study, the short texts of related microblog comments in the early stage of the COVID-19 pandemic were taken as the research object. Based on the extended association rule Apriori Algorithm and Markov Chain, a new method called the deviation rule Markov model is proposed. This model analyzes the correlation and transfer between Internet users’ emotion classes and predicts the changing trends of Internet users’ emotional states in the early stage of the pandemic by calculating the transfer probability of different emotion classes and constructing a time-varying emotion state transfer matrix. The experimental results demonstrated that the emotional state of netizens after the pandemic outbreak was not negative but gradually changed to “positive” emotions over time. Through a comparative analysis of examples, the validity and accuracy of the affective prediction model for online public opinion proposed in this study were verified.
|
Received: 24 October 2022
|
|
|
|
1 Qiu J T, Liu C H, Li Y H, et al. Leveraging sentiment analysis at the aspects level to predict ratings of reviews[J]. Information Sciences, 2018, 451/452: 295-309. 2 Rao Y H, Xie H R, Li J, et al. Social emotion classification of short text via topic-level maximum entropy model[J]. Information & Management, 2016, 53(8): 978-986. 3 Yadollahi A, Shahraki A G, Zaiane O R. Current state of text sentiment analysis from opinion to emotion mining[J]. ACM Computing Surveys, 2017, 50(2): Article No.25. 4 张宜浩, 朱小飞, 徐传运, 等. 基于用户评论的深度情感分析和多视图协同融合的混合推荐方法[J]. 计算机学报, 2019, 42(6): 1316-1333. 5 Sun S L, Luo C, Chen J Y. A review of natural language processing techniques for opinion mining systems[J]. Information Fusion, 2017, 36: 10-25. 6 Raza A A, Habib A, Ashraf J, et al. Semantic orientation based decision making framework for big data analysis of sporadic news events[J]. Journal of Grid Computing, 2019, 17(2): 367-383. 7 Yoon H G, Kim H, Kim C O, et al. Opinion polarity detection in Twitter data combining shrinkage regression and topic modeling[J]. Journal of Informetrics, 2016, 10(2): 634-644. 8 曾雪强, 华鑫, 刘平生, 等. 基于情感轮和情感词典的文本情感分布标记增强方法[J]. 计算机学报, 2021, 44(6): 1080-1094. 9 Cai Y T, Wan X J. Multi-domain sentiment classification based on domain-aware embedding and attention[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019: 4904-4910. 10 曹柳文, 周艳艳, 邬昌兴, 等. 基于互学习的多词向量融合情感分类框架[J]. 中文信息学报, 2022, 36(7): 164-172. 11 Wang Y C, Pal A. Detecting emotions in social media: a constrained optimization approach[C]// Proceedings of the 24th International Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2015: 996-1002. 12 钟敏娟, 万常选, 刘德喜. 基于关联规则挖掘和极性分析的商品评论情感词典构建[J]. 情报学报, 2016, 35(5): 501-509. 13 Huang J, Li G R, Huang Q M, et al. Learning label-specific features and class-dependent labels for multi-label classification[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(12): 3309-3323. 14 张立, 肖志勇. 多目标依存建模在特定目标情感分类中的应用[J]. 中文信息学报, 2022, 36(5): 133-144. 15 饶元, 吴连伟, 王一鸣, 等. 基于语义分析的情感计算技术研究进展[J]. 软件学报, 2018, 29(8): 2397-2426. 16 耿晓伟, 刘丹, 牛燕华. 分析思维降低情感预测影响偏差[J]. 心理学报, 2020, 52(10): 1168-1177. 17 陈玮, 林雪健, 尹钟. 基于神经网络融合标签相关性的多标签情感预测研究[J]. 中文信息学报, 2021, 35(1): 104-112. 18 Yoo S Y, Song J I, Jeong O R. Social media contents based sentiment analysis and prediction system[J]. Expert Systems with Applications, 2018, 105: 102-111. 19 Lei X J, Qian X M, Zhao G S. Rating prediction based on social sentiment from textual reviews[J]. IEEE Transactions on Multimedia, 2016, 18(9): 1910-1921. 20 Dong X F, Lian Y, Tang X Y, et al. The damped oscillator model (DOM) and its application in the prediction of emotion development of online public opinions[J]. Expert Systems with Applications, 2020, 148: 113268. 21 Gupta S, Halder P. A hybrid lexicon-based sentiment and behaviour prediction system[C]// Proceedings of the Conference on Advances in Control, Signal Processing and Energy Systems. Singapore: Springer, 2020: 67-77. 22 Sun X, Li C C, Ren F J. Sentiment analysis for Chinese microblog based on deep neural networks with convolutional extension features[J]. Neurocomputing, 2016, 210: 227-236. 23 Huang W D, Wang Q, Cao J. Tracing public opinion propagation and emotional evolution based on public emergencies in social networks[J]. International Journal of Computers Communications & Control, 2018, 13(1): 129-142. 24 Wang M Y, Wu H, Zhang T Y, et al. Identifying critical outbreak time window of controversial events based on sentiment analysis[J]. PLoS One, 2020, 15(10): e0241355. 25 Yang T H, Wu C H, Huang K Y, et al. Coupled HMM-based multimodal fusion for mood disorder detection through elicited audio-visual signals[J]. Journal of Ambient Intelligence and Humanized Computing, 2017, 8(6): 895-906. 26 赵晨阳, 张鹏, 王娟, 等. 共生视角下网络舆情中公众情感的演化及趋势预测[J]. 情报理论与实践, 2022, 45(7): 148-157. 27 王伟军, 黄英辉, 李颖, 等. 基于微博公众情感状态的新产品市场预测研究[J]. 情报学报, 2017, 36(5): 511-522. 28 Chai L, Xu H F, Luo Z M, et al. A multi-source heterogeneous data analytic method for future price fluctuation prediction[J]. Neurocomputing, 2020, 418: 11-20. 29 孙嘉琪, 王晓晔, 杨鹏, 等. 基于时间序列模型和情感分析的情感趋势预测[J]. 计算机工程与设计, 2021, 42(10): 2938-2945. 30 史伟, 王洪伟, 何绍义. 基于知网的模糊情感本体的构建研究[J]. 情报学报, 2012, 31(6): 595-602. 31 李彤, 宋之杰. 基于模型集成的突发事件舆情分析与趋势预测研究[J]. 系统工程理论与实践, 2015, 35(10): 2582-2587. 32 Solairaj A, Sugitha G, Kavitha G. Enhanced Elman spike neural network based sentiment analysis of online product recommendation[J]. Applied Soft Computing, 2023, 132: 109789. |
|
|
|