|
|
Potential Knowledge Flow Detection from an Integrated Perspective of Three-Dimensional Citations: A Case Study of Gene Editing |
Wang Feifei1, Wang Xiaohan1, Xu Shuo1, Lu Wanzhao1, Song Yanhui2 |
1.School of Economics and Management, Beijing University of Technology, Beijing 100124 2.School of Management, Hangzhou Dianzi University, Hangzhou 310018 |
|
|
Abstract In the era of knowledge economy, the value of knowledge flow in stimulating knowledge innovation and promoting scientific and technological development has gradually become more prominent. Based on the fusion of direct-co-citation-coupling citation association, this paper mines the potential knowledge flow in the domain at the subject association level. Indicators of link prediction are used as the feature values to construct the classifier and regressor, respectively. The classifier is used to predict the knowledge flow that is not yet present but is likely to occur in the future. The regressor is mainly used to predict the current knowledge flow with low link weights, which has not attracted widespread attention but has high link weights in the future. The two-layer prediction method is comprehensive and complementary, which can more fully detect research frontiers and emerging trends in the field. Using this idea to explore the currently trending field of gene editing technology, we have obtained the potential knowledge flow and research hotspot in this field, which can serve as a reference for the future research direction for researchers.
|
Received: 16 August 2019
|
|
|
|
1 华连连, 张悟移. 知识流动及相关概念辨析[J]. 情报杂志, 2010, 29(10): 112-117. 2 魏奇锋, 顾新. 基于知识流动的产学研协同创新过程研究[J]. 科技进步与对策, 2013, 30(15): 133-137. 3 赵蓉英, 吴胜男. 基于引证关系的知识转移的理论研究[J]. 情报理论与实践, 2014, 37(12): 28-32. 4 徐晓艺, 杨立英. 基于合著论文的学科知识流动网络的特征分析——以“药物化学”学科为例[J]. 图书情报工作, 2015, 59(1): 89-98. 5 Morris S A, van der Veer Martens B. Mapping research specialties[J]. Annual Review of Information Science and Technology, 2008, 42(1): 213-295. 6 Shibata N, Kajikawa Y, Takeda Y, et al. Comparative study on methods of detecting research fronts using different types of citation[J]. Journal of the American Society for Information Science and Technology, 2009, 60(3): 571-580. 7 王亮, 张庆普. 基于引文网络的知识流动过程与机制研究[J]. 哈尔滨工业大学学报(社会科学版), 2014, 16(1): 110-116. 8 赵蓉英, 吴胜男, 陈瑞. 基于引证关系的知识转移模式及其实证研究——以知识管理研究为例[J]. 情报杂志, 2013, 32(3): 137-143. 9 Yan E J, Ding Y. Scholarly network similarities: How bibliographic coupling networks, citation networks, cocitation networks, topical networks, coauthorship networks, and coword networks relate to each other[J]. Journal of the American Society for Information Science and Technology, 2012, 63(7): 1313-1326. 10 Qiu J P, Dong K, Yu H Q. Comparative study on structure and correlation among author co-occurrence networks in bibliometrics[J]. Scientometrics, 2014, 101(2): 1345-1360. 11 Persson O. Identifying research themes with weighted direct citation links[J]. Journal of Informetrics, 2010, 4(3): 415-422. 12 Egghe L, Rousseau R. Co-citation, bibliographic coupling and a characterization of lattice citation networks[J]. Scientometrics, 2002, 55(3): 349-361. 13 Iwami S, Mori J, Sakata I, et al. Detection method of emerging leading papers using time transition[J]. Scientometrics, 2014, 101(2): 1515-1533. 14 梁永霞, 杨中楷, 刘则渊. 引文分析学的学科地位[J]. 情报理论与实践, 2010, 33(5): 18-20. 15 Yan E J. Finding knowledge paths among scientific disciplines[J]. Journal of the Association for Information Science and Technology, 2014, 65(11): 2331-2347. 16 Jo H, Park Y, Kim S E, et al. Exploring the intellectual structure of nanoscience and nanotechnology: journal citation network analysis[J]. Journal of Nanoparticle Research, 2016, 18(6): 1-21. 17 Ma R M, Yan E J. Uncovering inter-specialty knowledge communication using author citation networks[J]. Scientometrics, 2016, 109(2): 839-854. 18 张艺蔓, 马秀峰, 程结晶. 融合引文内容和全文本引文分析的知识流动研究[J]. 情报杂志, 2015, 34(11): 50-54, 49. 19 宋凯, 李秀霞, 赵思喆, 等. 基于LDA模型的国家间知识流动分析[J]. 情报杂志, 2017, 36(6): 55-60. 20 李盈, 许萍. 基于引文网络的医学各学科间知识流动的规律与启示[J]. 中华医学图书情报杂志, 2014, 23(12): 1-5. 21 Wang F F, Wang X H, Yang S L. Mining author relationship in scholarly networks based on tripartite citation analysis[J]. PLoS One, 2017, 12(11): e0187653. 22 翟东升, 刘鹤, 张杰, 等. 一种基于链路预测的技术机会挖掘方法[J]. 情报学报, 2016, 35(10): 1090-1100. 23 李睿. 专利引文分析法与共词分析法在揭示科学-技术知识关联方面的差异对比[J]. 图书情报工作, 2010, 54(6): 91-93, 140. 24 关鹏, 王曰芬. 科技情报分析中LDA主题模型最优主题数确定方法研究[J]. 现代图书情报技术, 2016, 32(9): 42-50. 25 吕琳媛, 周涛. 链路预测[M]. 北京: 高等教育出版社, 2013: 50-66. 26 李聪, 曹文广. CRISPR/Cas9介导的基因编辑技术研究进展[J]. 生物工程学报, 2015, 31(11): 1531-1542. 27 Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in python[J]. Journal of Machine Learning Research, 2011, 12(10): 2825-2830. 28 基因编辑助力攻克癌症, 成功案例登上Science子刊[EB/OL]. (2017-02-27) [2018-10-15]. http://www.medsci.cn/article/show_ article.do?id=781f9011006. 29 年度猛料: 细胞治疗娶了基因编辑, 生了娃叫啥?[EB/OL]. (2016-01-29) [2018-10-15]. http://www.sohu.com/a/57274356_183834. 30 基因编辑技术CRISPR-Cas9是如何改变世界的?[EB/OL]. (2018-03-05)[2018-10-15]. http://med.sina.com/article_detail_103_2_42121.html. 31 国际基因编辑科技发展报告-2017[EB/OL]. (2018-02-11) [2018-10-15]. http://www.biotech.org.cn/information/153439. |
|
|
|