|
|
Technology Prediction Method Based on Data Fusion and Life Cycle: Empirical Analysis of Virus Nucleic Acid Detection |
Zhang Yang, Lin Yuhang, Hou Jianhua |
School of Information Management, Sun Yat-sen University, Guangzhou 510006 |
|
|
Abstract The construction of an efficient prediction model depends on the selection of the appropriate basic data. Given the characteristics of virus nucleic acid detection technology, and the shortcomings of existing research, such as considering a single data source and ignoring the impact of technology life cycle, this paper proposes an improved technology prediction method based on link prediction algorithm. According to the basic data set selected by considering the technology life cycle theory, we establish a weighted co-occurrence network of technical-subject-fields. This is achieved by integrating patents and documents as data sources. The empirical research and comparative analysis is conducted through a multi-level and multi-stage prediction method. Experimental results show that under the weighted link prediction index, compared with a single data source, the prediction effect of the fusion data is significantly improved. Finally, combined with the law of technology evolution and the theory of life cycle, this study provides a valuable reference for delimiting the time range of data base, which can further raise the prediction efficiency and accuracy.
|
Received: 23 March 2020
|
|
|
|
1 张韵君, 柳飞红. 基于专利分析的技术预测概念模型[J]. 情报杂志, 2014, 33(3): 22-27. 2 Kim G, Bae J. A novel approach to forecast promising technology through patent analysis[J]. Technological Forecasting and Social Change, 2017, 117: 228-237. 3 王兴旺, 董珏, 余婷婷, 等. 基于多种类型信息计量分析的前沿技术预测方法研究[J]. 情报杂志, 2018, 37(10): 70-75, 89. 4 You H L, Li M J, Hipel K W, et al. Development trend forecasting for coherent light generator technology based on patent citation network analysis[J]. Scientometrics, 2017, 111(1): 297-315. 5 Wang B C, Liu Y F, Zhou Y, et al. Emerging nanogenerator technology in China: a review and forecast using integrating bibliometrics, patent analysis and technology roadmapping methods[J]. Nano Energy, 2018, 46: 322-330. 6 周源, 刘宇飞, 薛澜. 一种基于机器学习的新兴技术识别方法: 以机器人技术为例[J]. 情报学报, 2018, 37(9): 939-955. 7 Li X, Xie Q Q, Jiang J J, et al. Identifying and monitoring the development trends of emerging technologies using patent analysis and Twitter data mining: the case of perovskite solar cell technology[J]. Technological Forecasting and Social Change, 2019, 146: 687-705. 8 任海英, 赵育慧, 于立婷. 基于知识网络的科学研究机会发现的机理和应用[J]. 情报理论与实践, 2018, 41(11): 89-95. 9 傅颖斌, 陈羽中. 基于链路预测的微博用户关系分析[J]. 计算机科学, 2014, 41(2): 201-205, 244. 10 张军, 夏昊翔. 基于粗糙相似度的有向网络链路预测[J]. 系统工程, 2015, 33(11): 146-152. 11 Liben-Nowell D, Kleinberg J. The link-prediction problem for social networks[J]. Journal of the American Society for Information Science and Technology, 2007, 58(7): 1019-1031. 12 Yan E J, Guns R. Predicting and recommending collaborations: an author-, institution-, and country-level analysis[J]. Journal of Informetrics, 2014, 8(2): 295-309. 13 Swanson D R. Undiscovered public knowledge[J]. The Library Quarterly, 1986, 56(2): 103-118. 14 Caviggioli F. Technology fusion: identification and analysis of the drivers of technology convergence using patent data[J]. Technovation, 2016, 55/56: 22-32. 15 慎金花, 闫倩倩, 孙乔宣, 等. 基于专利数据挖掘的技术融合识别与技术机会预测研究——以电动汽车产业为例[J]. 图书馆杂志, 2019, 38(10): 95-106. 16 梁永霞, 刘则渊, 杨中楷. 引文分析学的知识流动理论探析[J]. 科学学研究, 2010, 28(5): 668-674. 17 任海英, 于立婷, 黄鲁成. 基于链接预测的科学研究机会发现方法研究[J]. 情报杂志, 2016, 35(10): 53-58, 36. 18 魏红芹, 周成. 专利间知识流动与技术融合趋势研究[J]. 科技进步与对策, 2018, 35(22): 17-22. 19 Wen F F. Technological relatedness based on co-classification network analysis: a case study on electricity sector[J]. Journal of Digital Information Management, 2016, 14(1): 26-32. 20 武玉英, 张博闻, 何喜军, 等. 新能源领域专利转让网络中技术供需主体间交易机会预测[J].情报杂志, 2018, 37(5): 79-84, 96. 21 张瑜, 菅利荣, 于菡子. 基于GERT网络的产学研知识流动效应度量[J]. 运筹与管理, 2016, 25(2): 282-287. 22 刘宏鲲, 吕琳媛, 周涛. 利用链路预测推断网络演化机制[J]. 中国科学: 物理学 力学 天文学, 2011, 41(7): 816-823. 23 吕琳媛. 复杂网络链路预测[J]. 电子科技大学学报, 2010, 39(5): 651-661. 24 翟东升, 刘鹤, 张杰, 等. 一种基于链路预测的技术机会挖掘方法[J]. 情报学报, 2016, 35(10): 1090-1100. 25 黄璐, 朱一鹤, 张嶷. 基于加权网络链路预测的新兴技术主题识别研究[J]. 情报学报, 2019, 38(4): 335-341. 26 尹忠博, 罗威, 罗准辰. 数据驱动的技术预测: 现状、技术与趋势[J]. 情报理论与实践, 2018, 41(12): 35-40. 27 高楠, 彭鼎原, 傅俊英, 等. 基于专利IPC分类与文本信息的前沿技术演进分析——以人工智能领域为例[J]. 情报理论与实践, 2020, 43(4): 123-129. 28 Zhang M H, Chen Y X. Link prediction based on graph neural networks[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2018: 5171-5181. 29 苏晨, 吉邢虎, 何治柯. 核酸工具酶辅助的信号放大技术在生物分子检测中的应用[J]. 分析科学学报, 2016, 32(2): 273-281. 30 丁雄, 牟颖. 数字核酸扩增检测技术的研究与应用进展[J]. 分析化学, 2016, 44(4): 512-521. 31 Zhao J, Miao L L, Yang J, et al. Prediction of links and weights in networks by reliable routes[J]. Scientific Reports, 2015, 5: 12261. 32 Lu W S, Peng Y, Chen X, et al. The S-curve for forecasting waste generation in construction projects[J]. Waste Management, 2016, 56: 23-34. 33 邹乐乐, 吴怡, 陈佩佩. 清洁技术研发选择及其演化规律研究[J]. 科研管理, 2019, 40(6): 100-110. 34 Shi Y, Guan J C. Small-world network effects on innovation: evidences from nanotechnology patenting[J]. Journal of Nanoparticle Research, 2016, 18(11): 329. |
|
|
|