Predicting Literature Download Behavior by Integrating Features of Behavioral Sequences of Academic Users
Zhang Xiaojuan1, Guo Jiarun1, Yang Shihan1, Gui Sisi2
1.School of Public Administration, Sichuan University, Chengdu 610065 2.College of Information Management, Nanjing Agricultural University, Nanjing 210095
1 Li X Y, de Rijke M. Characterizing and predicting downloads in academic search[J]. Information Processing & Management, 2019, 56(3): 394-407. 2 Dali Betzalel N, Shapira B, Rokach L. “Please, not now!”: a model for timing recommendations[C]// Proceedings of the 9th ACM Conference on Recommender Systems. New York: ACM Press, 2015: 297-300. 3 谢豪, 吴雪华, 陈茜, 等. 融合多维特征的学术文献下载行为预测研究[J]. 图书情报工作, 2021, 65(12): 112-121. 4 刘冰, 鲁庆碧. 网络学术信息搜索中科研用户信息选判影响因素实证研究——基于复杂任务情境[J]. 情报理论与实践, 2018, 41(4): 50-55. 5 金燕, 刘琦, 毕崇武. 研究生学术搜索中的信息规避行为与成因研究[J]. 图书情报工作, 2022, 66(18): 84-94. 6 成全, 刘彬彬. 用户跨平台学术信息搜索行为影响因素研究: 注意力控制与自我效能的调节作用[J]. 情报科学, 2022, 40(2): 82-90. 7 Zhang Y, Liu C. Influence of course type and assignment features on students' information seeking behaviors[J]. Proceedings of the Association for Information Science and Technology, 2019, 56(1): 844-846. 8 Chen X Y. Investigating users' sustained information seeking on academic social networking sites[J]. Aslib Journal of Information Management, 2023, 75(6): 1129-1151. 9 Hagiwara Y, Ishita E, Watanabe Y, et al. Identifying scholarly search skills based on resource and document selection behavior among researchers and master’s students in engineering[J]. College & Research Libraries, 2022, 83(4): 610-630. 10 袁红, 杨婧. 信息觅食视角的学术信息探索式搜索行为特征研究[J]. 情报科学, 2019, 37(5): 58-65, 177. 11 夏立新, 周鼎, 秦晓琪, 等. 学术信息探索式搜索行为的情感变化与眼动特征研究[J]. 情报杂志, 2022, 41(4): 135-143. 12 Wu D, Liang S B, Yu W T. Collaborative information searching as learning in academic group work[J]. Aslib Journal of Information Management, 2018, 70(1): 2-27. 13 Poitras E, Mayne Z, Huang L Y, et al. Scaffolding student teachers' information-seeking behaviours with a network-based tutoring system[J]. Journal of Computer Assisted Learning, 2019, 35(6): 731-746. 14 Han Z B, Hansen P, Xu H Y, et al. Examining the classification and evolution of novice users’ mental models of an academic database in the search task completion process[J]. Journal of Information Science, 2020, 46(2): 205-225. 15 李燕波. 特定研究任务下学术用户的信息搜索行为特征分析——基于高校研究生的实证研究[J]. 图书馆学研究, 2013(17): 59-64. 16 Islamaj Dogan R, Murray G C, Névéol A, et al. Understanding PubMed? user search behavior through log analysis[J]. Database, 2009, 2009: bap018. 17 Li X Y, Schijvenaars B J A, de Rijke M. Investigating queries and search failures in academic search[J]. Information Processing & Management, 2017, 53(3): 666-683. 18 王瑞雪, 方婧, 桂思思, 等. 基于深度学习算法的学术查询意图分类器构建[J]. 图书情报工作, 2021, 65(3): 93-99. 19 Chang Y S, He K Y, Yu S, et al. Identifying user goals from Web search results[C]// Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence. Piscataway: IEEE, 2006: 1038-1041. 20 Khabsa M, Wu Z H, Giles C L. Towards better understanding of academic search[C]// Proceedings of the 2016 IEEE/ACM Joint Conference on Digital Libraries. Piscataway: IEEE, 2016: 111-114. 21 张春雪, 仇丽青, 孙承爱, 等. 基于两阶段动态兴趣识别的购买行为预测模型[J]. 计算机应用, 2024, 44(8): 2365-2371. 22 ?iri? M, Predi? B, Stojanovi? D, et al. Single and multiple separate LSTM neural networks for multiple output feature purchase prediction[J]. Electronics, 2023, 12(12): 2616. 23 Kim S, Shin W, Kim H W. Predicting online customer purchase: the integration of customer characteristics and browsing patterns[J]. Decision Support Systems, 2024, 177: 114105. 24 夏嘉伟. 基于历史浏览数据与用户分群的新客复购预测[D]. 上海: 华东师范大学, 2023. 25 Sun M. Prediction method of consumer repeat purchase behaviour in e-commerce environment[J]. International Journal of Web Based Communities, 2023, 19(4): 267-278. 26 吴永庆, 王钰涵, 朱月. 基于用户多类型反馈行为序列的点击率预估模型[J]. 计算机工程, 2024, 50(10): 405-417. 27 何李杰, 高茂庭. 基于交叉注意力的点击率预测模型[J]. 计算机工程与应用, 2025, 61(7): 353-360. 28 郭尚志, 廖晓峰, 鲜开义. 基于组合结构的逻辑回归点击预测算法[J]. 计算机科学, 2024, 51(2): 73-78. 29 Gligorijevic J, Gligorijevic D, Stojkovic I, et al. Deeply supervised model for click-through rate prediction in sponsored search[J]. Data Mining and Knowledge Discovery, 2019, 33(5): 1446-1467. 30 Gharibshah Z, Zhu X Q, Hainline A, et al. Deep learning for user interest and response prediction in online display advertising[J]. Data Science and Engineering, 2020, 5(1): 12-26. 31 Raphael J, Rao N M, Bindu A, et al. Clustering-based factorization machines for advertisement click prediction[J]. Procedia Computer Science, 2022, 215: 546-555. 32 北京万方数据股份有限公司. 2020年万方数据知识服务平台期刊文献(个人)用户行为日志[DS/OL]. 2020年第二届“慧源共享”全国高校开放数据创新研究大赛数据集, (2022-09-29). https://i-huiyuan.shec.edu.cn/data/dv/HuiyuanSharingDataCompetition2020/faces/study/StudyPage.xhtml?studyId=154&versionNumber=3. 33 八爪鱼采集器[EB/OL]. [2024-03-15]. https://www.bazhuayu.com. 34 孙丽, 邹俊强, 牟冬梅. 网络查询重构策略预测研究综述[J]. 情报理论与实践, 2020, 43(2): 171-176, 170. 35 孙丽, 刘强. 用户主题熟悉度对网络查询重构行为的影响——基于用户实验研究[J]. 情报理论与实践, 2018, 41(3): 101-105, 116. 36 Kinley K, Tjondronegoro D, Partridge H, et al. Relationship between the nature of the search task types and query reformulation behaviour[C]// Proceedings of the Seventeenth Australasian Document Computing Symposium. New York: ACM Press, 2012: 39-46. 37 孙丽, 邱丽亚. 查询重构行为与满意度关系研究[J]. 情报理论与实践, 2018, 41(7): 48-52, 64. 38 赵一鸣, 李倩, 邱雨蒙, 等. 用户搜索路径特征对信息搜索效果的影响研究——基于fsQCA的方法[J]. 情报学报, 2023, 42(1): 103-112. 39 孙丽, 曹锦丹. 不同任务类型下查询重构行为分析[J]. 情报学报, 2016, 35(9): 980-988. 40 王瑞雪, 方婧, 李信, 等. 学术查询意图类目体系构建与分析: 百度学术查询日志的实证[J]. 图书情报工作, 2021, 65(4): 73-80. 41 Huang J, Efthimiadis E N. Analyzing and evaluating query reformulation strategies in web search logs[C]// Proceedings of the 18th ACM Conference on Information and Knowledge Management. New York: ACM Press, 2009: 77-86. 42 吴丹, 董晶. 移动图书馆用户查询式构造行为分析[J]. 图书情报工作, 2016, 60(18): 6-13. 43 桂思思, 徐健. 面向三类查询意图歧义性的查询表达式自动识别研究[J]. 情报科学, 2021, 39(11): 90-95. 44 吴丹, 梁少博, 董晶. 查询式序列视角下跨设备搜索信息准备与重用阶段的眼动变化研究[J]. 情报学报, 2019, 38(7): 760-770. 45 Fu H Y. Query reformulation patterns of mixed language queries in different search intents[C]// Proceedings of the 2017 Conference on Conference Human Information Interaction and Retrieval. New York: ACM Press, 2017: 249-252. 46 zh_core_web_sm-3.1.0[EB/OL]. (2021-07-06) [2024-03-20]. https:// github.com/explosion/spacy-models/releases/tag/zh_core_web_sm-3.1.0. 47 段文强. 基于用户行为序列的网络购买行为预测[D]. 南昌: 江西财经大学, 2019. 48 张红霞, 董燕辉, 肖军弼, 等. 基于行为延迟共享网络的个性化商品推荐方法[J]. 电子与信息学报, 2021, 43(10): 2993-3000. 49 Berndt D, Clifford J. Using dynamic time warping to find patterns in time series[C]// Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining. Palo Alto: AAAI Press, 1994: 359-370. 50 薛桐, 靳志宏, 徐世达. 数据与模型双驱动的集装箱码头集卡周转时间预测[J]. 计算机工程与应用, 2025, 61(2): 355-362. 51 Wen X Y, Li W B. Time series prediction based on LSTM-attention-LSTM model[J]. IEEE Access, 2023, 11: 48322-48331. 52 Wang X C, Dong S Y, Zhang R. An integrated time series prediction model based on empirical mode decomposition and two attention mechanisms[J]. Information, 2023, 14(11): 610. 53 Duan H S, Meng X, Tang J, et al. Time-series prediction using a regularized self-organizing long short-term memory neural network[J]. Applied Soft Computing, 2023, 145: 110553.