摘要揭示技术演化脉络是把握技术发展规律的前提,基于专利信息的主题挖掘是基于技术发展微观机制呈现宏观规律的重要研究内容,对技术超前布局和创新驱动实践具有重大意义。技术主题动态演化分析DPL-BMM(Dirichlet process biterm-based mixture model with labelling)是一种附有标签的基于双项狄利克雷过程的混合模型,其突破了传统主题模型在进行主题识别时需固定主题数目的局限,通过增加技术主题表示模块使识别到的技术主题内容更加明确。本文以人工智能领域技术为例进行实证分析,研究结果表明,该方法对技术主题及其演化脉络展示具有实际应用价值。
1 Heiss M, Jankowsky J. The technology tree concept - an evolutionary approach to technology management in a rapidly changing market[C]// IEMC’01 Proceedings: Change Management and the New Industrial Revolution. Piscataway: IEEE, 2001: 37-43. 2 Yoon B, Phaal R, Probert D. Morphology analysis for technology roadmapping: application of text mining[J]. R&D Management, 2008, 38(1): 51-68. 3 Verspagen B. Mapping technological trajectories as patent citation networks: a study on the history of fuel cell research[J]. Advances in Complex Systems, 2007, 10(1): 93-115. 4 Fontana R, Nuvolari A, Verspagen B. Mapping technological trajectories as patent citation networks: an application to data communication standards[J]. Economics of Innovation and New Technology, 2009, 18(4): 311-336. 5 Martinelli A. An emerging paradigm or just another trajectory? Understanding the nature of technological changes using engineering heuristics in the telecommunications switching industry[J]. Research Policy, 2012, 41(2): 414-429. 6 Zhou X, Zhang Y, Porter A L, et al. A patent analysis method to trace technology evolutionary pathways[J]. Scientometrics, 2014, 100(3): 705-721. 7 黄颖, 叶冬梅, 丁凤, 等. 技术演化路径识别: 内涵释义与研究进展[J]. 图书情报工作, 2022, 66(22): 142-154. 8 高楠, 高嘉骐, 陈洪璞. 新兴技术识别与演化路径分析方法研究——以集成电路领域为例[J]. 情报科学, 2023, 41(3): 127-135, 172. 9 吴菲菲, 张亚茹, 黄鲁成, 等. 基于AToT模型的技术主题多维动态演化分析——以石墨烯技术为例[J]. 图书情报工作, 2017, 61(5): 95-102. 10 陈亮, 张静, 张海超, 等. 层次主题模型在技术演化分析上的应用研究[J]. 图书情报工作, 2017, 61(5): 103-108. 11 丰米宁, 魏凤, 李健, 等. 产业链视角下的主题识别与技术演化研究——以3D打印领域为例[J]. 情报杂志, 2020, 39(8): 46-52, 62. 12 吕璐成, 周健, 王学昭, 等. 基于双层主题模型的技术演化分析框架及其应用[J]. 数据分析与知识发现, 2022, 6(Z1): 18-32. 13 盛世豪. 试论技术进化和技术体系的演变[J]. 科学管理研究, 1989, 7(3): 44-47. 14 Blei D M, Lafferty J D. Dynamic topic models[C]// Proceedings of the 23rd International Conference on Machine Learning. New York: ACM Press, 2006: 113-120. 15 Chen J Y, Gong Z G, Liu W W. A Dirichlet process biterm-based mixture model for short text stream clustering[J]. Applied Intelligence, 2020, 50(5): 1609-1619. 16 Hartigan J A, Wong M A. Algorithm AS 136: a k-means clustering algorithm[J]. Journal of the Royal Statistical Society, Series C (Applied Statistics), 1979, 28(1): 100-108. 17 Blei D M, Ng A Y, Jordan M I. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3(4-5): 993-1022. 18 Yin J H, Chao D R, Liu Z K, et al. Model-based clustering of short text streams[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM Press, 2018: 2634-2642. 19 Pitman J. Poisson-Dirichlet and GEM invariant distributions for split-and-merge transformations of an interval partition[J]. Combinatorics, Probability and Computing, 2002, 11(5): 501-514. 20 王秀红, 高敏. 基于BERT-LDA的关键技术识别方法及其实证研究——以农业机器人为例[J]. 图书情报工作, 2021, 65(22): 114-125. 21 Rose S, Engel D, Cramer N, et al. Automatic keyword extraction from individual documents[M]// Text Mining: Applications and Theory. Chichester: John Wiley & Sons, 2010: 1-20. 22 Mauri M, Elli T, Caviglia G, et al. RAWGraphs: a visualisation platform to create open outputs[C]// Proceedings of the 12th Biannual Conference on Italian SIGCHI Chapter. New York: ACM Press, 2017: Article No.28. 23 陈悦, 王康, 宋超, 等. 基于技术融合视角下的人工智能技术嵌入态势研究[J]. 科学学研究, 2021, 39(8): 1448-1458. 24 刘则渊, 陈悦. 现代科学技术与发展导论[M]. 2版. 大连: 大连理工大学出版社, 2011. 25 Deng J, Dong W, Socher R, et al. ImageNet: a large-scale hierarchical image database[C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 248-255. 26 Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2012: 1097-1105. 27 R?der M, Both A, Hinneburg A. Exploring the space of topic coherence measures[C]// Proceedings of the Eighth ACM International Conference on Web Search and Data Mining. New York: ACM Press, 2015: 399-408.