Multi-dimension Public Opinion Mining of Social Media Based on the Hierarchical Viewpoint Tree
Xi Haixu1,2, Zhang Chengzhi1, Zhao Yi1, Tian Liang1
1.Department of Information Management, School of Economics & Management, Nanjing University of Science & Technology, Nanjing 210094 2.School of Computer Engineering, Jiangsu University of Technology, Changzhou 213001
习海旭, 章成志, 赵毅, 田亮. 基于层次观点树的社交媒体多维度观点挖掘研究[J]. 情报学报, 2023, 42(3): 304-315.
Xi Haixu, Zhang Chengzhi, Zhao Yi, Tian Liang. Multi-dimension Public Opinion Mining of Social Media Based on the Hierarchical Viewpoint Tree. 情报学报, 2023, 42(3): 304-315.
1 Ahmed W, Vidal-Alaball J, Downing J, et al. COVID-19 and the 5G conspiracy theory: social network analysis of Twitter data[J]. Journal of Medical Internet Research, 2020, 22(5): e19458. 2 Naseem U, Razzak I, Musial K, et al. Transformer based Deep Intelligent Contextual Embedding for Twitter sentiment analysis[J]. Future Generation Computer Systems, 2020, 113: 58-69. 3 Darwish K, Stefanov P, Aupetit M, et al. Unsupervised user stance detection on Twitter[J]. Proceedings of the International AAAI Conference on Web and Social Media, 2020, 14: 141-152. 4 张柳, 王晰巍, 黄博, 等. 基于LDA模型的新冠肺炎疫情微博用户主题聚类图谱及主题传播路径研究[J]. 情报学报, 2021, 40(3): 234-244. 5 Zhu L X, He Y L, Zhou D Y. Hierarchical viewpoint discovery from tweets using Bayesian modelling[J]. Expert Systems with Applications, 2019, 116: 430-438. 6 章成志, 童甜甜, 周清清. 基于细粒度评论挖掘的书评自动摘要研究[J]. 情报学报, 2021, 40(2): 163-172. 7 安宁, 安璐. 突发公共卫生事件舆情环境下的群体智慧涌现研究[J]. 情报学报, 2022, 41(1): 96-106. 8 Angelidis S, Amplayo R K, Suhara Y, et al. Extractive opinion summarization in quantized transformer spaces[J]. Transactions of the Association for Computational Linguistics, 2021, 9: 277-293. 9 Mottaghinia Z, Feizi-Derakhshi M R, Farzinvash L, et al. A review of approaches for topic detection in Twitter[J]. Journal of Experimental & Theoretical Artificial Intelligence, 2021, 33(5): 747-773. 10 Zuo Y, Wu J J, Zhang H, et al. Topic modeling of short texts: a pseudo-document view[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2016: 2105-2114. 11 Hong M, Wang H Y. Research on customer opinion summarization using topic mining and deep neural network[J]. Mathematics and Computers in Simulation, 2021, 185: 88-114. 12 Delprato D J, Midgley B D. Some fundamentals of B. F. Skinner’s behaviorism[J]. American Psychologist, 1992, 47(11): 1507-1520. 13 K?hler W. Gestalt psychology[J]. Psychologische Forschung, 1967, 31(1): XVIII-XXX. 14 Blei D M, Griffiths T L, Jordan M I. The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies[J]. Journal of the ACM, 2010, 57(2): Article No.7. 15 Wang C, Danilevsky M, Desai N, et al. A phrase mining framework for recursive construction of a topical hierarchy[C]// Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2013: 437-445. 16 Pham D, Le T M V. Neural Topic Models for Hierarchical Topic Detection and Visualization[C]// Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer, 2021: 35-51. 17 Viegas F, Cunha W, Gomes C, et al. CluHTM - semantic hierarchical topic modeling based on CluWords[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2020: 8138-8150. 18 Yu D J, Xu D W, Wang D J, et al. Hierarchical topic modeling of Twitter data for online analytical processing[J]. IEEE Access, 2019, 7: 12373-12385. 19 马晓悦, 孙铭菲. 融合热点事件主题演化的民族文化扩散研究[J]. 图书情报工作, 2022, 66(3): 106-117. 20 Biber D, Finegan E. Adverbial stance types in English[J]. Discourse Processes, 1988, 11(1): 1-34. 21 刘玮, 彭鑫, 李超, 等. 立场分析研究综述[J]. 中文信息学报, 2020, 34(12): 1-8. 22 Li Y J, Caragea C. Multi-task stance detection with sentiment and stance lexicons[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2019: 6299-6305. 23 ALDayel A, Magdy W. Stance detection on social media: state of the art and trends[J]. Information Processing & Management, 2021, 58(4): 102597. 24 李志义, 王冕, 赵鹏武. 基于条件随机场模型的“评价特征-评价词”对抽取研究[J]. 情报学报, 2017, 36(4): 411-421. 25 Katiyar A, Cardie C. Investigating LSTMs for joint extraction of opinion entities and relations[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2016: 919-929. 26 罗芳, 汪竞航, 张宇恒, 等. 融合传播影响力的热点事件时序摘要研究[J]. 中文信息学报, 2021, 35(7): 98-108. 27 Chakraborty R, Bhavsar M, Dandapat S K, et al. Tweet summarization of news articles: an objective ordering-based perspective[J]. IEEE Transactions on Computational Social Systems, 2019, 6(4): 761-777. 28 余传明, 郑智梁, 朱星宇, 等. 面向查询的观点摘要模型研究: 以Debatepedia为数据源[J]. 情报学报, 2020, 39(4): 374-386. 29 Ma W J, Chao W H, Luo Z C, et al. Claim Retrieval in Twitter[C]// Proceedings of the International Conference on Web Information Systems Engineering. Cham: Springer, 2018: 297-307. 30 Zhao X W, Wang D Q, Zhao Z Y, et al. A neural topic model with word vectors and entity vectors for short texts[J]. Information Processing & Management, 2021, 58(2): 102455. 31 Le Q, Mikolov T. Distributed representations of sentences and documents[C]// Proceedings of the 31st International Conference on Machine Learning. JMLR.org, 2014: 1188-1196. 32 McInnes L, Healy J, Saul N, et al. UMAP: uniform manifold approximation and projection[J]. Journal of Open Source Software, 2018, 3(29): 861. 33 McInnes L, Healy J, Astels S. hdbscan: hierarchical density based clustering[J]. Journal of Open Source Software, 2017, 2(11): 205. 34 Niu L Q, Dai X Y, Zhang J B, et al. Topic2Vec: Learning distributed representations of topics[C]// Proceedings of the 2015 International Conference on Asian Language Processing. IEEE, 2016: 193-196. 35 Chen E, Lerman K, Ferrara E. Tracking social media discourse about the COVID-19 pandemic: development of a public coronavirus Twitter data set[J]. JMIR Public Health and Surveillance, 2020, 6(2): e19273. 36 Mutlu E C, Oghaz T, Jasser J, et al. A stance data set on polarized conversations on Twitter about the efficacy of hydroxychloroquine as a treatment for COVID-19[J]. Data in Brief, 2020, 33: 106401. 37 Wang M L, Cao R Y, Zhang L K, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro[J]. Cell Research, 2020, 30(3): 269-271. 38 Gautret P, Lagier J C, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial[J]. International Journal of Antimicrobial Agents, 2020, 56(1): 105949. 39 ALDayel A, Magdy W. Your stance is exposed! analysing possible factors for stance detection on social media[J]. Proceedings of the ACM on Human-Computer Interaction, 2019, 3(CSCW): Article No.205. 40 Jurafsky D. Speech & language processing[M]. New Delhi: Pearson Education India, 2000. 41 Mihalcea R, Tarau P. TextRank: bringing order into texts[C]// Proceedings of Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2004: 404-411. 42 Brooke J. SUS: a retrospective[J]. Journal of Usability Studies, 2013, 8(2): 29-40. 责任编辑 魏瑞斌)