Research Technology Readiness Assessment Methods for Emerging Technology Directions Based on Applied Basic Research
Wang Chun1,2,3,4, Leng Fuhai1
1.Institutes of Science and Development, Chinese Academy of Sciences, Beijing 100190 2.School of Public Policy and Management, University of Chinese Academy of Sciences, Beijing 100049 3.National Science Library, Chinese Academy of Sciences, Beijing 100190 4.School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190
1 Rotolo D, Hicks D, Martin B R. What is an emerging technology?[J]. Research Policy, 2015, 44(10): 1827-1843. 2 GAO. Technology readiness assessment guide: best practices for evaluating the readiness of technology for use in acquisition programs and projects[R/OL]. (2020-01-01) [2024-10-10]. https://www.gao.gov/assets/710/706680.pdf. 3 European Commission. General annexes[R/OL]// Horizon 2020: Work Programme 2016-2017. (2017-04-24) [2024-06-10]. https://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016-2017/annexes/h2020-wp1617-annex-ga_en.pdf. 4 Buchner G A, Stepputat K J, Zimmermann A W, et al. Specifying technology readiness levels for the chemical industry[J]. Industrial & Engineering Chemistry Research, 2019, 58(17): 6957-6969. 5 Manning C G. Technology readiness levels[EB/OL]. (2023-09-27) [2024-10-10]. https://www.nasa.gov/directorates/somd/space-communications-navigation-program/technology-readiness-levels/. 6 Mankins J C. Technology readiness assessments: a retrospective[J]. Acta Astronautica, 2009, 65(9/10): 1216-1223. 7 EARTO. The TRL scale as a research & innovation policy tool, EARTO recommendations[R/OL]. (2014-04-30) [2024-06-10]. https://www.earto.eu/wp-content/uploads/The_TRL_Scale_as_a_R_I_Policy_Tool_-_EARTO%5FRecommendations_-_Final.pdf. 8 产业成熟度编研组. 产业成熟度评价方法与应用[M]. 北京: 中国宇航出版社, 2017: 34-43. 9 Australian Renewable Energy Agency. Technology readiness levels for renewable energy sectors[R/OL]. (2014-02-01) [2024-09-10]. https://www.arena.gov.au/assets/2014/02/Technology-Readiness-Levels.pdf. 10 Medical Countermeasures.gov. About the technology readiness levels (TRLs): a common set of definitions for determining the progress of research and development programs in the field of medical countermeasures[EB/OL]. (2024-02-01) [2024-02-10]. https://www.medicalcountermeasures.gov/trl/. 11 Héder M. From NASA to EU: the evolution of the TRL scale in Public Sector Innovation[J]. Innovation Journal, 2017, 22(2): 1-23. 12 Bruno I, Lobo G, Covino B V, et al. Technology readiness revisited: a proposal for extending the scope of impact assessment of European public services[C]// Proceedings of the 13th International Conference on Theory and Practice of Electronic Governance. New York: ACM Press, 2020: 369-380. 13 Watts R J, Porter A L. Innovation forecasting[J]. Technological Forecasting and Social Change, 1997, 56(1): 25-47. 14 王山, 谭宗颖. 技术生命周期判断方法研究综述[J]. 现代情报, 2020, 40(11): 144-153. 15 Cauthen K, Rai P, Hale N, et al. Detecting technological maturity from bibliometric patterns[J]. Expert Systems with Applications, 2022, 201: 117177. 16 Beims R F, Simonato C L, Wiggers V R. Technology readiness level assessment of pyrolysis of trygliceride biomass to fuels and chemicals[J]. Renewable and Sustainable Energy Reviews, 2019, 112: 521-529. 17 Mishra P N, Jain S, Bore T, et al. Biological perspectives in geotechnics: application and monitoring[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2024, 16(7): 2854-2878. 18 Abercrombie R K, Schlicher B G, Sheldon F T. Scientometric methods for identifying emerging technologies: US9177249B2[P]. 2015-11-03. 19 Rodríguez López N, Alvarez Cabal J V, Cui?as M C, et al. Applicability of technology maturity level evaluation methodologies within small- and medium-sized organizations: prospects and proposals[J]. Systems, 2023, 11(8): 387. 20 Lezama-Nicolás R, Rodríguez-Salvador M, Río-Belver R, et al. A bibliometric method for assessing technological maturity: the case of additive manufacturing[J]. Scientometrics, 2018, 117(3): 1425-1452. 21 Faidi S. Assessing bibliometrics for the automation of technology readiness level assessments[D]. Toronto: University of Toronto, 2021: 31-52. 22 Conrow E H. Estimating technology readiness level coefficients[J]. Journal of Spacecraft and Rockets, 2011, 48(1): 146-152. 23 Dastoor J, Zhang H Y, Balchanos M G, et al. A bibliometric approach to characterizing technology readiness levels using machine learning[C]// Proceedings of the AIAA SciTech Forum and Exposition. Reston: AIAA, 2023: 291-308. 24 韩丽娟, 刘畅. 一种基于科技大数据的技术成熟度判断方法和系统: CN111126865A[P]. 2020-05-08. 25 陈志. 回归纯科学还是走向综合?——基础研究概念的演变与启示[J]. 人民论坛·学术前沿, 2023(9): 36-43. 26 Gardner P L. The representation of science-technology relationships in Canadian physics textbooks[J]. International Journal of Science Education, 1999, 21(3): 329-347. 27 李晓华. 未来产业发展的新趋势和中国特色发展之路[EB/OL]. (2022-08-03) [2024-06-28]. http://www.rmlt.com.cn/2022/0803/653238.shtml. 28 Xu H Y, Winnink J, Yue Z H, et al. Multidimensional Scientometric indicators for the detection of emerging research topics[J]. Technological Forecasting and Social Change, 2021, 163: 120490. 29 Ba Z C, Liang Z T. A novel approach to measuring science-technology linkage: from the perspective of knowledge network coupling[J]. Journal of Informetrics, 2021, 15(3): 101167. 30 Xu H Y, Winnink J, Yue Z H, et al. Topic-linked innovation paths in science and technology[J]. Journal of Informetrics, 2020, 14(2): 101014. 31 Chen X, Ye P F, Huang L, et al. Exploring science-technology linkages: a deep learning-empowered solution[J]. Information Processing & Management, 2023, 60(2): 103255. 32 U.S. Department of Energy. Technology readiness assessment guide[R/OL]. (2011-09-15) [2024-05-01]. https://www.directives.doe.gov/directives-documents/400-series/0413.3-EGuide-04a/@@images/file. 33 International Organization for Standardization. Space systems—Definition of the Technology Readiness Levels (TRLs) and their criteria of assessment: ISO 16290: 2013(E)[S]. Geneva: ISO, 2013. 34 Government of Canada. Technology readiness levels[EB/OL]. (2018-01-23) [2024-06-01]. https://ised-isde.canada.ca/site/innovation-canada/en/technology-readiness-levels. 35 张冰. 研发活动的底层逻辑——技术成熟度[EB/OL]. (2022-01-11) [2024-05-01]. https://www.163.com/dy/article/GTF0O8PH0511D98B. html. 36 Ardilio A, Warschat J, Spath D. Customized technology readiness: introducing the application specific technology readiness model[C]// 2012 Proceedings of PICMET '12: Technology Management for Emerging Technologies. Piscataway: IEEE, 2012: 1260-1272. 37 Cramer J S. The early origins of the logit model[J]. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 2004, 35(4): 613-626. 38 Sharma P, Li Y B. Self-supervised contextual keyword and keyphrase retrieval with self-labelling[OL]. (2019-08-06). https://doi.org/10.20944/preprints201908.0073.v1. 39 Dunning T. Accurate methods for the statistics of surprise and coincidence[J]. Computational Linguistics, 1993, 19(1): 61-74. 40 李杰, 陈超美. CiteSpace: 科技文本挖掘及可视化[M]. 北京: 首都经济贸易大学出版社, 2016: 27-31. 41 Grootendorst M. BERTopic: neural topic modeling with a class-based TF-IDF procedure[OL]. (2022-03-11). https://arxiv.org/pdf/2203.05794. 42 杨思洛, 于永浩. 基于BERTopic模型的国内信息资源管理研究主题挖掘与演化分析[J]. 情报科学, 2024, 42(8): 12-21. 43 郑德俊, 程为. 基于三维主题特征测度的新兴主题识别研究[J]. 情报学报, 2024, 43(2): 167-180. 44 郭倩影, 赵丹群. 基于BERTopic算法的引文主题实证分析——以一篇高被引诺贝尔生理学或医学奖论文为例[J]. 情报理论与实践, 2024, 47(10): 183-189, 182. 45 学术点滴. 金字塔(DIKW4.2)——一款综合性科研分析软件[EB/OL]. (2022-01-07) [2024-05-15]. https://blog.csdn.net/qq_39974284/article/details/122365487. 46 Beltagy I, Lo K, Cohan A. SciBERT: a pretrained language model for scientific text[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2019: 3615-3620. 47 Marx V. Seeing data as t-SNE and UMAP do[J]. Nature Methods, 2024, 21(6): 930-933. 48 Utterback J M, Abernathy W J. A dynamic model of process and product innovation[J]. Omega, 1975, 3(6): 639-656. 49 Anderson P, Tushman M L. Technological discontinuities and dominant designs: a cyclical model of technological change[J]. Administrative Science Quarterly, 1990, 35(4): 604-633. 50 张利飞, 张运生. 国际竞争背景下我国数字技术产业主导设计开发机制研究[J]. 中国软科学, 2023(7): 23-34, 88. 51 Suárez F F. Battles for technological dominance: an integrative framework[J]. Research Policy, 2004, 33(2): 271-286. 52 Brem A, Nylund P A, Schuster G. Innovation and de facto standardization: the influence of dominant design on innovative performance, radical innovation, and process innovation[J]. Technovation, 2016, 50-51: 79-88. 53 刘懿, 周丽英. 主路径分析方法研究进展[J]. 数字图书馆论坛, 2019(10): 8-15. 54 陈亮, 余池, 尚玮姣, 等. 基于密度聚类算法改进的语义主路径分析方法研究[J]. 情报学报, 2024, 43(3): 287-301. 55 Lai K K, Chen H C, Chang Y H, et al. A structured MPA approach to explore technological core competence, knowledge flow, and technology development through social network patentometrics[J]. Journal of Knowledge Management, 2021, 25(2): 402-432. 56 Mauger A, Julien C M, Goodenough J B, et al. Tribute to Michel armand: from rocking chair-Li-ion to solid-state lithium batteries[J]. Journal of the Electrochemical Society, 2020, 167(7): 070507. 57 Meyer P S, Yung J W, Ausubel J H. A primer on logistic growth and substitution the mathematics of the loglet lab software[J]. Technological Forecasting and Social Change, 1999, 61(3): 247-271. 58 田胜男, 孙冰. 基于路径导向视角的战略性新兴产业主导设计识别研究[J/OL]. 南开管理评论, (2024-07-23). http://kns.cnki.net/kcms/detail/12.1288.F.20240722.1530.002.html.