Temporal Networks: Concept, Application, and Perspective
Wu Jiang1,2,3, Yu Yang1,2, Ding Honghao1,2, Tao Chengxu1,2, Zuo Renxian1,2, He Chaocheng1,2,3,4
1.School of Information Management, Wuhan University, Wuhan 430072 2.Center for E-commerce Research and Development, Wuhan University, Wuhan 430072 3.Wuhan Institute of Data Intelligence, Wuhan 430072 4.Wuhan University Shenzhen Research Institute, Shenzhen 519057
1 孟韬, 王维. 社会网络视角下的虚拟社区研究综述[J]. 情报科学, 2017, 35(3): 171-176. 2 杨永清, 王鑫磊, 张媛媛, 等. 舆情传播中社交网络圈群结构属性的影响机制研究[J]. 情报杂志, 2023, 42(7): 102-108. 3 Gao T C, Pan R, Wang S Y, et al. Community detection for statistical citation network by D-SCORE[J]. Statistics and Its Interface, 2021, 14(3): 279-294. 4 罗素平, 寇翠翠, 金金, 等. 基于离群专利的颠覆性技术预测——以中药专利为例[J]. 情报理论与实践, 2019, 42(7): 165-170. 5 李登杰, 翟东升, 冯秀珍, 等. 基于动态网络的石墨烯专利技术分析[J]. 情报杂志, 2015, 34(10): 52-58, 33. 6 Holme P, Saram?ki J. Temporal networks[J]. Physics Reports, 2012, 519(3): 97-125. 7 Viana M P, Amancio D R, da F Costa L. On time-varying collaboration networks[J]. Journal of Informetrics, 2013, 7(2): 371-378. 8 Huang H M, Shen H, Meng Z Q. Item diversified recommendation based on influence diffusion[J]. Information Processing & Management, 2019, 56(3): 939-954. 9 康旭东, 贾汐玥, 邓乐乐, 等. 基于全代引证网络的高影响力专利知识扩散特征研究[J]. 图书情报工作, 2022, 66(22): 83-94. 10 周静, 庄艳阳, 周季蕾. 基于文本语义与动态网络结构的科研合作网络链路预测研究[J]. 情报资料工作, 2022, 43(6): 21-29. 11 Guo T, Zhu X Q, Pei J, et al. SNOC: streaming network node classification[C]// Proceedings of the 2014 IEEE International Conference on Data Mining. Piscataway: IEEE, 2014: 150-159. 12 余韦, 章金楠, 朱梦丽, 等. 基于符号网络社团检测的舆情情报分析方法研究[J]. 情报杂志, 2022, 41(5): 55-60, 161. 13 Yu J T, Xiao B, Cui Y Z. A review of temporal network analysis and applications[C]// 3D Imaging—Multidimensional Signal Processing and Deep Learning: Images, Augmented Reality and Information Technologies. Singapore: Springer, 2023: 1-10. 14 张明智, 罗凯, 吴曦, 等. 时效网络及其应用研究[J]. 系统仿真学报, 2019, 31(4): 679-686. 15 Jiang J J, Wen S, Yu S, et al. Rumor source identification in social networks with time-varying topology[J]. IEEE Transactions on Dependable and Secure Computing, 2018, 15(1): 166-179. 16 Akimushkin C, Amancio D R, Oliveira Jr O N. Text authorship identified using the dynamics of word co-occurrence networks[J]. PLoS One, 2017, 12(1): e0170527. 17 洪成, 蒋沅, 严玉为, 等. 基于层间邻域信息熵的时序网络节点重要性评估方法[J]. 复杂系统与复杂性科学, 2024, 21(1): 20-27, 42. 18 Holme P. Modern temporal network theory: a colloquium[J]. The European Physical Journal B, 2015, 88(9): Article No.234. 19 Yang L, Chatelain C, Adam S. Dynamic graph representation learning with neural networks: a survey[J]. IEEE Access, 2024, 12: 43460-43484. 20 van Engelen J E, Hoos H H. A survey on semi-supervised learning[J]. Machine Learning, 2020, 109(2): 373-440. 21 Hamilton W, Ying R, Leskovec J. Inductive representation learning on large graphs[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2017: 1025-1035. 22 魏静, 贾宇广, 朱恒民, 等. 基于认知失调的动态网络下用户观点演化研究[J]. 现代情报, 2023, 43(5): 104-113. 23 Wang J, Lee J J. Predicting and analyzing technology convergence for exploring technological opportunities in the smart health industry[J]. Computers & Industrial Engineering, 2023, 182: 109352. 24 Bai L, Yao L N, Wang X Z, et al. Deep spatial–temporal sequence modeling for multi-step passenger demand prediction[J]. Future Generation Computer Systems, 2021, 121: 25-34. 25 Jiao P F, Zhang X X, Liu Z H, et al. A deep contrastive framework for unsupervised temporal link prediction in dynamic networks[J]. Information Sciences, 2024, 667: 120499. 26 Ma Y H, Yang X M, Qu S, et al. Research on the formation mechanism of big data technology cooperation networks: empirical evidence from China[J]. Scientometrics, 2022, 127(3): 1273-1294. 27 Besednjak Vali? T, Kolar J, Lamut U. Fighting the big bad wolf of global trends: technology transfer between HPC centres and SMEs[J]. Digital Policy, Regulation and Governance, 2022, 24(6): 498-512. 28 李慧, 庞经纬, 孟玮. 基于专利知识流网络和图表示学习的技术机会链路预测研究[J]. 情报理论与实践, 2023, 46(7): 107-114, 149. 29 Cao G, Cui S M, Joe I. Improving the spatial–temporal aware attention network with dynamic trajectory graph learning for next Point-Of-Interest recommendation[J]. Information Processing & Management, 2023, 60(3): 103335. 30 赵文竹, 袁冠, 张艳梅, 等. 多视角融合的时空动态GCN城市交通流量预测[J]. 软件学报, 2024, 35(4): 1751-1773. 31 梁秀霞, 夏曼曼, 何月阳, 等. 基于时空多头图注意力网络的交通流预测[J]. 电子学报, 2024, 52(2): 500-509. 32 Lv L S, Bardou D, Hu P, et al. Graph regularized nonnegative matrix factorization for link prediction in directed temporal networks using PageRank centrality[J]. Chaos, Solitons & Fractals, 2022, 159: 112107. 33 Breiger R L, Carley K M, Pattison P. Dynamic social network modeling and analysis: workshop summary and papers[M]. Washington, D.C.: National Academies Press, 2003. 34 刘彤, 杨冠灿, 蒋继娅, 等. 基于多重关系的专利网络演化特征与动态分析——以锂离子电池领域为例[J]. 情报学报, 2014, 33(12): 1288-1301. 35 Carley K M, Reminga J. ORA: organization risk analyzer[R]. Pittsburgh: Carnegie Mellon University, 2004. 36 李永奎, 庞达, 李东宇, 等. 基于元网络的项目组织学习能力对任务完成影响评价仿真方法[J]. 系统工程理论与实践, 2016, 36(5): 1252-1260. 37 Lambiotte R, Tabourier L, Delvenne J C. Burstiness and spreading on temporal networks[J]. The European Physical Journal B, 2013, 86(7): Article No.320. 38 Holme P. Core-periphery organization of complex networks[J]. Physical Review E, 2005, 72(4): 046111. 39 Braha D, Bar-Yam Y. From centrality to temporary fame: dynamic centrality in complex networks[J]. Complexity, 2006, 12(2): 59-63. 40 王慧, 乐孜纯, 龚轩, 等. 从信息学的角度分析复杂网络链路预测[J]. 小型微型计算机系统, 2020, 41(2): 316-326. 41 王金喆. 社交网络用户影响力分析[J]. 电子技术与软件工程, 2017(17): 28. 42 杨煜, 段威威. 基于谱聚类的社交网络动态社区发现算法[J]. 计算机应用, 2023, 43(10): 3129-3135. 43 Redjeki S, Widyarto S. Comparison of seven machine learning algorithms in the classification of public opinion[J]. Tech-E, 2022, 5(2): 143-149. 44 Park M, Geum Y. Two-stage technology opportunity discovery for firm-level decision making: GCN-based link-prediction approach[J]. Technological Forecasting and Social Change, 2022, 183: 121934. 45 Shi Y F, Tao H Y, Deng C B, et al. FBS-TGCN: a temporal graph-convolutional-network model for spatiotemporal prediction of spam messages from fake base stations[J]. International Journal of Geographical Information Science, 2024, 38(3/4): 751-777. 46 Goyal P, Ferrara E. Graph embedding techniques, applications, and performance: a survey[J]. Knowledge-Based Systems, 2018, 151: 78-94. 47 胡昊天, 邓三鸿, 王东波, 等. 情报学视角下的预训练语言模型研究进展[J]. 图书情报工作, 2024, 68(3): 130-150. 48 李一帆, 王玙. 基于动态网络表示学习的学者合作关系预测研究[J]. 情报科学, 2022, 40(6): 115-123. 49 Li X, Tang X L, Lu W. How biomedical papers accumulated their clinical citations: a large-scale retrospective analysis based on PubMed[J]. Scientometrics, 2024, 129(6): 3315-3339. 50 Light R, Adams J. Knowledge in motion: the evolution of HIV/AIDS research[J]. Scientometrics, 2016, 107(3): 1227-1248. 51 Zhang X K, Lin H F, Xu B, et al. Dynamic intent-aware iterative denoising network for session-based recommendation[J]. Information Processing & Management, 2022, 59(3): 102936. 52 Chen R H G, Chen C C, Chen C M. Unsupervised cluster analyses of character networks in fiction: community structure and centrality[J]. Knowledge-Based Systems, 2019, 163: 800-810. 53 Choi J, Ko T, Choi Y, et al. Dynamic graph convolutional networks with attention mechanism for rumor detection on social media[J]. PLoS One, 2021, 16(8): e0256039. 54 Zeng L, Tang M, Liu Y. The impacts of the individual activity and attractiveness correlation on spreading dynamics in time-varying networks[J]. Communications in Nonlinear Science and Numerical Simulation, 2023, 122: 107233. 55 窦永香, 开庆, 王佳敏. 一种基于图表示学习的潜在颠覆性技术识别方法[J]. 情报学报, 2023, 42(6): 637-648. 56 Zhang Y T, Zhao T H, Gao S, et al. Incorporating multimodal context information into traffic speed forecasting through graph deep learning[J]. International Journal of Geographical Information Science, 2023, 37(9): 1909-1935. 57 段宇宁, 刘羿彤, 李晓萌, 等. 从国际计量机构科研产出看计量领域发展态势——基于文献计量学[J]. 计量学报, 2022, 43(5): 565-570. 58 卢志刚, 陈倩. 动态供应链网络中企业合作关系的链路预测[J]. 计算机工程与应用, 2022, 58(2): 265-273. 59 刘虹. 面向科学与技术的交叉领域研究——概念内涵、测度方法[J]. 现代情报, 2024, 44(5): 166-176. 60 杜郁, 朱焱. 构建预训练动态图神经网络预测学术合作行为消失[J]. 计算机应用, 2024, 44(9): 2726-2731. 61 喻宏伟, 周东波, 徐雯慧, 等. 基于多片段语义时空图卷积网络的大学生校园日常行为预测[J]. 清华大学学报(自然科学版), 2022, 62(1): 105-115. 62 赵金羽, 萨娜, 田野, 等. 基于文献计量的人地系统耦合研究动态及热点[J]. 生态学报, 2024, 44(6): 2660-2671. 63 吴颖文, 纪杨建, 顾新建. 基于专利动态复杂网络的产业共性技术预测[J]. 计算机集成制造系统, 2020, 26(12): 3185-3194. 64 陈果, 尹梓涵. 信息资源管理视域下的健康信息学研究——国内外研究主题对比分析[J]. 现代情报, 2024, 44(8): 137-152. 65 Rikken F, Kiers H A L, Vos R. Mapping the dynamics of adverse drug reactions in subsequent time periods using INDSCAL[J]. Scientometrics, 1995, 33(3): 367-380. 66 Xu L W, Qiu J N, Gu W J, et al. The dynamic effects of perceptions of dread risk and unknown risk on SNS sharing behavior during emerging infectious disease events: do crisis stages matter?[J]. Journal of the Association for Information Systems, 2020, 21(3): 545-573. 67 Giannoula A, Comas M, Castells X, et al. Exploring long-term breast cancer survivors' care trajectories using dynamic time warping-based unsupervised clustering[J]. Journal of the American Medical Informatics Association, 2024, 31(4): 820-831. 68 Salie F, de Jager K, Dreher C, et al. The scientific base for orthopaedic device development in South Africa: spatial and sectoral evolution of knowledge development[J]. Scientometrics, 2019, 119(1): 31-54. 69 Lee C Y, Hong S, Kim J. Anticipating multi-technology convergence: a machine learning approach using patent information[J]. Scientometrics, 2021, 126(3): 1867-1896. 70 Hanauer D A, Ramakrishnan N. Modeling temporal relationships in large scale clinical associations[J]. Journal of the American Medical Informatics Association, 2013, 20(2): 332-341. 71 Gao J Y, Sharma R, Qian C, et al. STAN: spatio-temporal attention network for pandemic prediction using real-world evidence[J]. Journal of the American Medical Informatics Association, 2021, 28(4): 733-743. 72 Al-Yarimi F A M, Ali Munassar N M, Al-Wesabi F N. Electrocardiogram stream level correlated patterns as features to classify heartbeats for arrhythmia prediction[J]. Data Technologies and Applications, 2020, 54(5): 685-701. 73 Alemu E N, Huang J B. HealthAid: extracting domain targeted high precision procedural knowledge from on-line communities[J]. Information Processing & Management, 2020, 57(6): 102299. 74 Kim E H J, Jeong Y K, Kim Y H, et al. Exploring scientific trajectories of a large-scale dataset using topic-integrated path extraction[J]. Journal of Informetrics, 2022, 16(1): 101242. 75 Porter A L, Cohen A S, David Roessner J, et al. Measuring researcher interdisciplinarity[J]. Scientometrics, 2007, 72(1): 117-147. 76 Song X L, Yan X B, Li Y M. Modelling liking networks in an online healthcare community: an exponential random graph model analysis approach[J]. Journal of Information Science, 2015, 41(1): 89-96. 77 Li T T, Zeng Z M, Sun S Q, et al. Constructing a multi-layer heterogeneous networks model to explore the public opinion evolution pattern of key users in public health emergencies[J]. Journal of Information Science, 2023. DOI: 10.1177/01655515231169953. 78 Ravindran T, Yeow Kuan A C, Hoe Lian D G. Antecedents and effects of social network fatigue[J]. Journal of the Association for Information Science and Technology, 2014, 65(11): 2306-2320. 79 Liu X L, Shi R Y, Hui Q X, et al. TCACNet: temporal and channel attention convolutional network for motor imagery classification of EEG-based BCI[J]. Information Processing & Management, 2022, 59(5): 103001. 80 Hossain L, Karimi F, Wigand R T, et al. Evolutionary longitudinal network dynamics of global zoonotic research[J]. Scientometrics, 2015, 103: 337-353. 81 Yang C, Liu T T, Chen X H, et al. HNRWalker: recommending academic collaborators with dynamic transition probabilities in heterogeneous networks[J]. Scientometrics, 2020, 123(1): 429-449. 82 Kong X J, Jiang H Z, Wang W, et al. Exploring dynamic research interest and academic influence for scientific collaborator recommendation[J]. Scientometrics, 2017, 113(1): 369-385. 83 Gan M X, Ma Y X. Mapping user interest into hyper-spherical space: a novel POI recommendation method[J]. Information Processing & Management, 2023, 60(2): 103169. 84 Jiang C, Ma X, Zeng J F, et al. TAPRec: time-aware paper recommendation via the modeling of researchers' dynamic preferences[J]. Scientometrics, 2023, 128(6): 3453-3471. 85 Gan M X, Wang C H, Yi L L, et al. Exploiting dynamic social feedback for session-based recommendation[J]. Information Processing & Management, 2024, 61(3): 103632. 86 Wang L Y, Li M C, Zheng H T. High-level feature fusion network for session-based social recommendation[C]// Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2023: 1-5. 87 Romano V, Lozano S, de Pablo J F L. A multilevel analytical framework for studying cultural evolution in prehistoric hunter-gatherer societies[J]. Biological Reviews, 2020, 95(4): 1020-1035. 88 Zhou X F. A spatio-temporal network model of Chinese ethnic culture transmission paths cultural[J]. Applied Mathematics and Nonlinear Sciences, 2024, 9(1). DOI: 10.2478/amns-2024-0789. 89 del Barrio-Tellado M J, Herrero-Prieto L C. Analysing productivity and technical change in museums: a dynamic network approach[J]. Journal of Cultural Heritage, 2022, 53: 24-34. 90 Bornhofen S, Düring M. Exploring dynamic multilayer graphs for digital humanities[J]. Applied Network Science, 2020, 5(1): Article No.54. 91 Sit T, Ying Z, Yu Y. Event history analysis of dynamic networks[J]. Biometrika, 2021, 108(1): 223-230. 92 Jones P, Quinn E, Koskinen J. Measuring centrality in film narratives using dynamic character interaction networks[J]. Social Networks, 2020, 63: 21-37. 93 Prado S D, Dahmen S R, Bazzan A L C, et al. Temporal network analysis of literary texts[J]. Advances in Complex Systems, 2016, 19(3): 1650005. 94 Zhang Y X, Feng Y X, Yang R Q. Network public opinion propagation model based on the influence of media and interpersonal communication[J]. International Journal of Modern Physics B, 2019, 33(32): 1950393. 95 Yu S Z, Yu Z Y, Jiang H J, et al. The dynamics and control of 2I2SR rumor spreading models in multilingual online social networks[J]. Information Sciences, 2021, 581: 18-41. 96 陈舒婷, 疏学明, 胡俊, 等. 基于时序超网络模型的突发事件网络舆情热点话题发现与演化[J]. 清华大学学报(自然科学版), 2023, 63(6): 968-979. 97 刘小洋, 何道兵, 刘超, 等. 基于时变阻尼运动的社交网络信息传播动力学分析[J]. 中国科学: 信息科学, 2021, 51(11): 1867-1884. 98 Chai Y, Wang Y G, Zhu L. Information sources estimation in time-varying networks[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 2621-2636. 99 危小超, 张艳菲, 李锋, 等. 基于过度反应与动态网络的互联网产品扩散消费者交互行为研究[J]. 计算机集成制造系统, 2022, 28(9): 3018-3030. 100 闫志华, 唐锡晋. 基于动态网络的事件风险演变研究[J]. 系统科学与数学, 2022, 42(10): 2590-2601. 101 Yang P, Leng J C, Zhao G Z, et al. Rumor detection driven by graph attention capsule network on dynamic propagation structures[J]. The Journal of Supercomputing, 2023, 79(5): 5201-5222. 102 朱义鑫, 朱恺. 基于时序网络记忆效应的意见领袖动态识别[J]. 计算机工程与设计, 2023, 44(2): 343-348. 103 Song H Y, Hou J H, Zhang Y. The measurements and determinants of patent technological value: lifetime, strength, breadth, and dispersion from the technology diffusion perspective[J]. Journal of Informetrics, 2023, 17(1): 101370. 104 张雪原, 许景权, 高国力. 我国基础设施系统集成的机制构建、突出问题与优化思路[J]. 经济纵横, 2024(3): 60-69. 105 Jiang Y C, Dai P W, Fang P C, et al. Electrical-STGCN: an electrical spatio-temporal graph convolutional network for intelligent predictive maintenance[J]. IEEE Transactions on Industrial Informatics, 2022, 18(12): 8509-8518. 106 Gu X H, Zhang Q, Li J F, et al. The changing nature and projection of floods across Australia[J]. Journal of Hydrology, 2020, 584: 124703. 107 Zhou X, Guo Y, Li F S, et al. Identifying and assessing innovation pathways for emerging technologies: a hybrid approach based on text mining and altmetrics[J]. IEEE Transactions on Engineering Management, 2021, 68(5): 1360-1371. 108 Nguyen A L, Liu W Y, Khor K A, et al. The golden eras of graphene science and technology: bibliographic evidences from journal and patent publications[J]. Journal of Informetrics, 2020, 14(4): 101067. 109 Mu?oz-écija T, Vargas-Quesada B, Chinchilla-Rodríguez Z. Unveiling cognitive structure and comparative advantages of countries in knowledge domains[J]. Journal of Information Science, 2024, 50(1): 145-161. 110 Wu H, Yi H F, Li C. An integrated approach for detecting and quantifying the topic evolutions of patent technology: a case study on graphene field[J]. Scientometrics, 2021, 126(8): 6301-6321. 111 丁小欧, 于晟健, 王沐贤, 等. 基于相关性分析的工业时序数据异常检测[J]. 软件学报, 2020, 31(3): 726-747. 112 王慧敏, 黄晶, 刘高峰, 等. 大数据驱动的城市洪涝灾害风险感知与预警决策研究范式[J]. 工程管理科技前沿, 2022, 41(1): 35-41. 113 赵冬月, 陈长坤, 易亮. 灾害演化网络时序性风险评估模型[J]. 中国安全科学学报, 2021, 31(3): 171-177. 114 刘伟, 孙佳, 王鹏, 等. 城市大数据认知计算研究与应用进展[J]. 计算机科学, 2024, 51(7): 49-58. 115 刘树林, 李红军, 甘雨金, 等. 基于线性低秩卷积与道路网络的城市流量推断[J]. 计算机工程, 2024, 50(7): 333-341. 116 杨亚让, 吴云虎. 基于随机森林的无线传感器通信网络阻塞故障检测[J]. 吉林大学学报(工学版), 2023, 53(5): 1490-1495. 117 叶宝林, 戴本岙, 张鸣剑, 等. 基于图卷积网络的交通流预测方法综述[J]. 南京信息工程大学学报, 2024, 16(3): 291-310. 118 郭淑慧, 吕欣. 网络直播大数据: 统计特征与时序规律挖掘[J]. 复杂系统与复杂性科学, 2023, 20(2): 1-9, 19. 119 王子彤, 李晨亮. 基于位置感知时空图卷积网络的交通流量预测[J/OL]. 数据分析与知识发现, (2024-03-14). https://kns.cnki.net/kcms/detail/10.1478.G2.20240313.1052.002.html. 120 张安勤, 胡梓明. 基于残差时序图卷积网络的交通速度预测[J]. 计算机仿真, 2023, 40(11): 116-121. 121 Wang Y, Currim F, Ram S. Deep learning of spatiotemporal patterns for urban mobility prediction using big data[J]. Information Systems Research, 2022, 33(2): 579-598. 122 何迎利, 胡光宇, 张浩, 等. 基于局部信息增强注意力机制的网络流量预测[J]. 科学技术与工程, 2023, 23(30): 13014-13022. 123 薛自杰, 卢昱妃, 宁芊, 等. 基于时空特征融合的网络流量预测模型[J]. 哈尔滨工业大学学报, 2023, 55(5): 30-38.