王康, 陈悦, 王玉奇, 韩盟. 颠覆性技术识别与扩散趋势预测:概念模型与实证分析[J]. 情报学报, 2024, 43(8): 899-913.
Wang Kang, Chen Yue, Wang Yuqi, Han Meng. Identification of Disruptive Technologies and Prediction of Diffusion Trends: Conceptual Model and Empirical Analysis. 情报学报, 2024, 43(8): 899-913.
1 Defense Advanced Research Projects Agency. Advancing national security through fundamental research[EB/OL]. [2023-05-10]. https://www.darpa.mil/about-us/advancing-national-security-through-fundamental-research. 2 曹晓阳. 通过重大颠覆性技术把握产业未来、抓住未来产业[J]. 科技中国, 2023(8): F0002. 3 潘一如, 毛进, 李纲. 基于引文网络的高颠覆性专利知识扩散特征研究[J]. 数据分析与知识发现, 2023, 7(10): 1-14. 4 王康, 陈悦, 宋超, 等. 颠覆性技术: 概念辨析与特征分析[J]. 科学学研究, 2022, 40(11): 1937-1946. 5 Barnett V, Lewis T, Abeles F. Outliers in statistical data[J]. Physics Today, 1979, 32(9): 73-74. 6 Lee J, Park S, Lee J. Technology opportunity analysis based on machine learning[J]. Axioms, 2022, 11(12): 708. 7 Chandola V, Banerjee A, Kumar V. Anomaly detection: a survey[J]. ACM Computing Surveys, 2009, 41(3): Article No.15. 8 Hawkins D M. Identification of outliers[M]. Dordrecht: Springer, 1980. 9 Kneeland M K, Schilling M A, Aharonson B S. Exploring uncharted territory: knowledge search processes in the origination of outlier innovation[J]. Organization Science, 2020, 31(3): 535-557. 10 Yoon J, Kim K. Detecting signals of new technological opportunities using semantic patent analysis and outlier detection[J]. Scientometrics, 2012, 90(2): 445-461. 11 Song K, Kim K, Lee S. Identifying promising technologies using patents: a retrospective feature analysis and a prospective needs analysis on outlier patents[J]. Technological Forecasting and Social Change, 2018, 128: 118-132. 12 Jee J, Shin H, Kim C, et al. Six different approaches to defining and identifying promising technology through patent analysis[J]. Technology Analysis & Strategic Management, 2022, 34(8): 961-973. 13 Zhou Y, Dong F, Liu Y F, et al. A deep learning framework to early identify emerging technologies in large-scale outlier patents: an empirical study of CNC machine tool[J]. Scientometrics, 2021, 126(2): 969-994. 14 王康, 陈悦. 基于异质性专利的颠覆性技术早期识别研究[J]. 科学学研究, 2023, 41(8): 1364-1375. 15 Aharonson B S, Schilling M A. Mapping the technological landscape: measuring technology distance, technological footprints, and technology evolution[J]. Research Policy, 2016, 45(1): 81-96. 16 Gibbert M, Nair L B, Weiss M, et al. Using outliers for theory building[J]. Organizational Research Methods, 2021, 24(1): 172-181. 17 Rodriguez A, Tosyali A, Kim B, et al. Patent clustering and outlier ranking methodologies for attributed patent citation networks for technology opportunity discovery[J]. IEEE Transactions on Engineering Management, 2016, 63(4): 426-437. 18 Jeon D, Ahn J M, Kim J, et al. A doc2vec and local outlier factor approach to measuring the novelty of patents[J]. Technological Forecasting and Social Change, 2022, 174: 121294. 19 Milovidov V. Hearing the sound of the wave: what impedes one’s ability to foresee innovations?[J]. Foresight and STI Governance, 2018, 12(1): 88-97. 20 伊惠芳, 刘细文, 龙艺璇. 技术创新全视角下技术机会发现研究进展[J]. 图书情报工作, 2021, 65(7): 132-142. 21 Zanella G, Liu C Z, Choo K K R. Understanding the trends in blockchain domain through an unsupervised systematic patent analysis[J]. IEEE Transactions on Engineering Management, 2023, 70(6): 1991-2005. 22 Li X, Wu Y D, Cheng H L, et al. Identifying technology opportunity using SAO semantic mining and outlier detection method: a case of triboelectric nanogenerator technology[J]. Technological Forecasting and Social Change, 2023, 189: 122353. 23 罗素平, 寇翠翠, 金金, 等. 基于离群专利的颠覆性技术预测——以中药专利为例[J]. 情报理论与实践, 2019, 42(7): 165-170. 24 Kaplan S, Vakili K. The double-edged sword of recombination in breakthrough innovation[J]. Strategic Management Journal, 2015, 36(10): 1435-1457. 25 纪亚琨, 余翔, 张奔, 等. 专利网络视角下的潜在颠覆性技术识别——以自动驾驶领域为例[J]. 情报杂志, 2022, 41(12): 46-50, 139. 26 Jia W F, Xie Y P, Zhao Y N, et al. Research on disruptive technology recognition of China’s electronic information and communication industry based on patent influence[J]. Journal of Global Information Management, 2021, 29(2): 148-165. 27 Bloodworth I. A search for discriminative linguistic markers in ICT practitioner discourse, for the ex-ante identification of disruptive innovation[J]. Proceedings of the IEEE, 2012, 6(9): 1511-1519. 28 黄鲁成, 蒋林杉, 吴菲菲. 萌芽期颠覆性技术识别研究[J]. 科技进步与对策, 2019, 36(1): 10-17. 29 刘玉梅, 温馨, 孟翔飞. 基于技术轨道跃迁的突破性技术预测方法及应用研究[J]. 情报杂志, 2021, 40(11): 39-45, 15. 30 范明姐. 基于多源异构数据的颠覆性技术早期识别研究[D]. 北京: 北京工业大学, 2020. 31 李乾瑞, 郭俊芳, 黄颖, 等. 基于专利计量的颠覆性技术识别方法研究[J]. 科学学研究, 2021, 39(7): 1166-1175. 32 王康, 陈悦. 技术融合视角下基于专利的颠覆性技术识别研究[J]. 情报杂志, 2022, 41(4): 29-36, 134. 33 韩芳, 张生太, 冯凌子, 等. 基于专利文献技术融合测度的突破性创新主题识别——以太阳能光伏领域为例[J]. 数据分析与知识发现, 2021, 5(12): 137-147. 34 Narin F, Hamilton K S, Olivastro D. The increasing linkage between U.S. technology and public science[J]. Research Policy, 1997, 26(3): 317-330. 35 王雪冰. 复杂网络视角下颠覆性技术创新扩散机制研究[D]. 长春: 吉林大学, 2022. 36 王丽, 刘细文. 基于专利数据的技术主题扩散量化研究与实现[J]. 数据分析与知识发现, 2022, 6(6): 1-10. 37 黄鲁成, 王宁. 专利视角下的技术扩散研究综述[J]. 科学学与科学技术管理, 2011, 32(10): 27-34. 38 陈悦, 王康, 宋超, 等. 一种用于技术融合与演化路径探测的新方法: 技术群相似度时序分析法[J]. 情报学报, 2021, 40(6): 565-574. 39 颜端武, 苏琼, 张馨月. 基于时序主题关联演化的科学领域前沿探测研究[J]. 情报理论与实践, 2019, 42(7): 144-150. 40 吴可凡, 王伟, 张世玉, 等. 技术不连续性视角下颠覆性技术识别方法研究[J]. 情报理论与实践, 2022, 45(10): 125-131. 41 于光辉, 宁钟, 李昊夫. 基于专利和Bass模型的颠覆性技术识别方法研究[J]. 科学学研究, 2021, 39(8): 1467-1473, 1536. 42 梁镇涛, 毛进, 李纲. 融合“科学-技术”知识关联的高颠覆性专利预测方法[J]. 情报学报, 2023, 42(6): 649-662. 43 陈育新, 卢俊, 韩毅. 基于专利文献的颠覆性技术识别研究——以人工智能为例[J]. 情报学报, 2022, 41(11): 1124-1133. 44 邓建军, 刘安蓉, 曹晓阳, 等. 颠覆性技术早期识别方法框架研究——基于科学端的视角[J]. 中国科学院院刊, 2022, 37(5): 674-684.