1 Harper C A, Tillett B B. Library of Congress controlled vocabularies and their application to the semantic web[J]. Cataloging & Classification Quarterly, 2007, 43(3/4): 47-68. 2 Hjorland B. Fundamentals of knowledge organization[J]. Knowledge Organization, 2003, 30(2): 87-111. 3 Schatz B R. Information retrieval in digital libraries: bringing search to the net[J]. Science, 1997, 275(5298): 327-334. 4 刘知远, 孙茂松, 林衍凯, 等. 知识表示学习研究进展[J]. 计算机研究与发展, 2016, 53(2): 247-261. 5 Peters M E, Neumann M, Iyyer M, et al. Deep contextualized word representations[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2018: 2227-2237. 6 Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]// Proceedings of the 31st Annual Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2017: 5998-6008. 7 Devlin J, Chang M W, Lee K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2019: 4171-4186. 8 Joshi M, Chen D Q, Liu Y H, et al. SpanBERT: improving pre-training by representing and predicting spans[J]. Transactions of the Association for Computational Linguistics, 2020, 8: 64-77. 9 陆伟, 李鹏程, 张国标, 等. 学术文本词汇功能识别——基于BERT向量化表示的关键词自动分类研究[J]. 情报学报, 2020, 39(12): 1320-1329. 10 谢靖, 刘江峰, 王东波. 古代中国医学文献的命名实体识别研究——以Flat-lattice增强的SikuBERT预训练模型为例[J]. 图书馆论坛, 2022, 42(10): 51-60. 11 张颖怡, 章成志. 基于学术论文全文的研究方法句自动抽取研究[J]. 情报学报, 2020, 39(6): 640-650. 12 王倩, 曾金, 刘家伟, 等. 基于深度学习的学术文本段落结构功能识别研究[J]. 情报科学, 2020, 38(3): 64-69. 13 Beltagy I, Lo K, Cohan A. SciBERT: a pretrained language model for scientific text[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2019: 3615-3620. 14 Cohan A, Feldman S, Beltagy I, et al. SPECTER: document-level representation learning using citation-informed transformers[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2020: 2270-2282. 15 Eto M. Evaluations of context-based co-citation searching[J]. Scientometrics, 2013, 94(2): 651-673. 16 Elkiss A, Shen S W, Fader A, et al. Blind men and elephants: what do citation summaries tell us about a research article?[J]. Journal of the American Society for Information Science and Technology, 2008, 59(1): 51-62. 17 Turney P D, Pantel P. From frequency to meaning: vector space models of semantics[J]. Journal of Artificial Intelligence Research, 2010, 37: 141-188. 18 徐戈, 王厚峰. 自然语言处理中主题模型的发展[J]. 计算机学报, 2011, 34(8): 1423-1436. 19 Dourado í C, Galante R, Gon?alves M A, et al. Bag of textual graphs (BoTG): a general graph-based text representation model[J]. Journal of the Association for Information Science and Technology, 2019, 70(8): 817-829. 20 Balinsky H, Balinsky A, Simske S J. Automatic text summarization and small-world networks[C]// Proceedings of the 11th ACM Symposium on Document Engineering. New York: ACM Press, 2011: 175-184. 21 Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality[J]. Advances in Neural Information Processing Systems, 2013, 26: 3111-3119. 22 Harrag F, El-Qawasmah E, Al-Salman A M S. Stemming as a feature reduction technique for Arabic text categorization[C]// Proceedings of the 2011 10th International Symposium on Programming and Systems. Piscataway: IEEE, 2011: 128-133. 23 Peng X Y, Ke D F, Chen Z B, et al. Automated Chinese essay scoring using vector space models[C]// Proceedings of the 2010 4th International Universal Communication Symposium. Piscataway: IEEE, 2010: 149-153. 24 Mao W L, Chu W W. The phrase-based vector space model for automatic retrieval of free-text medical documents[J]. Data & Knowledge Engineering, 2007, 61(1): 76-92. 25 Aleahmad A, Hakimian P, Mahdikhani F, et al. n-gram and local context analysis for Persian text retrieval[C]// Proceedings of the 2007 9th International Symposium on Signal Processing and Its Applications. Piscataway: IEEE, 2007: 1-4. 26 Harrag F, Hamdi-Cherif A, Al-Salman A, et al. Experiments in improvement of Arabic information retrieval[C]// Proceedings of the 3rd International Conference on Arabic Language Processing, Rabat, Morocco, 2009: 71-81. 27 Sang J G, Pang S C, Zha Y, et al. Design and analysis of a general vector space model for data classification in Internet of Things[J]. EURASIP Journal on Wireless Communications and Networking, 2019, 2019: Article No.263. 28 Radovanovi? M, Nanopoulos A, Ivanovi? M. On the existence of obstinate results in vector space models[C]// Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2010: 186-193. 29 Ramage D, Hall D, Nallapati R, et al. Labeled LDA: a supervised topic model for credit attribution in multi-labeled corpora[C]// Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2009: 248-256. 30 Blei D M, Lafferty J D. A correlated topic model of Science[J]. The Annals of Applied Statistics, 2007, 1(1): 17-35. 31 Xun G X, Li Y L, Zhao W X, et al. A correlated topic model using word embeddings[C]// Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence, 2017: 4207-4213. 32 Hai Z, Cong G, Chang K Y, et al. Analyzing sentiments in one go: a supervised joint topic modeling approach[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(6): 1172-1185. 33 Erosheva E, Fienberg S, Lafferty J. Mixed-membership models of scientific publications[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(suppl_1): 5220-5227. 34 Steyvers M, Smyth P, Rosen-Zvi M, et al. Probabilistic author-topic models for information discovery[C]// Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2004: 306-315. 35 Mihalcea R, Tarau P. TextRank: bringing order into text[C]// Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2004: 404-411. 36 Gottron T, Anderka M, Stein B. Insights into explicit semantic analysis[C]// Proceedings of the 20th ACM International Conference on Information and Knowledge Management. New York: ACM Press, 2011: 1961-1964. 37 Yamada I, Shindo H, Takeda H, et al. Learning distributed representations of texts and entities from knowledge base[J]. Transactions of the Association for Computational Linguistics, 2017, 5: 397-411. 38 Muhammad P F, Kusumaningrum R, Wibowo A. Sentiment analysis using word2vec and long short-term memory (LSTM) for Indonesian hotel reviews[J]. Procedia Computer Science, 2021, 179: 728-735. 39 Alammary A S. BERT models for Arabic text classification: a systematic review[J]. Applied Sciences, 2022, 12(11): 5720. 40 Lan Z Z, Chen M D, Goodman S, et al. ALBERT: a lite BERT for self-supervised learning of language representations[C]// Proceedings of the 8th International Conference on Learning Representations. Appleton: ICLR, 2020: 1-14. 41 Lewis M, Liu Y H, Goyal N, et al. BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2020: 7871-7880. 42 Zhang J Q, Zhao Y, Saleh M, et al. PEGASUS: pre-training with extracted gap-sentences for abstractive summarization[C]// Proceedings of the 37th International Conference on Machine Learning. JMLR.org, 2020: 11328-11339. 43 Brown T B, Mann B, Ryder N, et al. Language models are few-shot learners[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2020: 1877-1901. 44 丁恒, 任卫强, 曹高辉. 基于无监督图神经网络的学术文献表示学习研究[J]. 情报学报, 2022, 41(1): 62-72. 45 章成志, 张颖怡. 基于学术论文全文的研究方法实体自动识别研究[J]. 情报学报, 2020, 39(6): 589-600. 46 Gon?alves S, Cortez P, Moro S. A deep learning classifier for sentence classification in biomedical and computer science abstracts[J]. Neural Computing and Applications, 2020, 32(11): 6793-6807. 47 Lu W, Huang Y, Bu Y, et al. Functional structure identification of scientific documents in computer science[J]. Scientometrics, 2018, 115(1): 463-486. 48 Liu Y, Lapata M. Learning structured text representations[J]. Transactions of the Association for Computational Linguistics, 2018, 6: 63-75. 49 Li P Z, Gu J X, Kuen J, et al. SelfDoc: self-supervised document representation learning[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 5648-5656. 50 Lu Y H, Luo J Y, Xiao Y, et al. Text representation model of scientific papers based on fusing multi-viewpoint information and its quality assessment[J]. Scientometrics, 2021, 126(8): 6937-6963. 51 Ostendorff M, Rethmeier N, Augenstein I, et al. Neighborhood contrastive learning for scientific document representations with citation embeddings[C]// Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2022: 11670-11688. 52 Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2017: 6000-6010. 53 Lo K, Wang L L, Neumann M, et al. S2ORC: the semantic scholar open research corpus[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2020: 4969-4983. 54 Lipscomb C E. Medical subject headings (MeSH)[J]. Bulletin of the Medical Library Association, 2000, 88(3): 265-266. 55 Le Q, Mikolov T. Distributed representations of sentences and documents[C]// Proceedings of the 31st International Conference on Machine Learning. JMLR.org, 2014: II-1188-II-1196. 56 Bojanowski P, Grave E, Joulin A, et al. Enriching word vectors with subword information[J]. Transactions of the Association for Computational Linguistics, 2017, 5: 135-146. 57 Arora S, Liang Y Y, Ma T Y. A simple but tough-to-beat baseline for sentence embeddings[C]// Proceedings of the International Conference on Learning Representations. Appleton: ICLR, 2017. 58 Bhagavatula C, Feldman S, Power R, et al. Content-based citation recommendation[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2018: 238-251. 59 Wu F, Souza A, Zhang T, et al. Simplifying graph convolutional networks[C]// Proceedings of the 36th International Conference on Machine Learning. Lille: PMLR Press, 2019: 6861-6871. 60 Reimers N, Gurevych I. Sentence-BERT: sentence embeddings using Siamese BERT-networks[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2019: 3982-3992. 61 Gao T Y, Yao X C, Chen D Q. SimCSE: simple contrastive learning of sentence embeddings[C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2021: 6894-6910. 62 Izacard G, Caron M, Hosseini L, et al. Unsupervised dense information retrieval with contrastive learning[J/OL]. Transactions on Machine Learning Research, (2022-08-29). https://openreview.net/pdf?id=jKN1pXi7b0. 63 Chuang Y S, Dangovski R, Luo H Y, et al. DiffCSE: difference-based contrastive learning for sentence embeddings[C]// Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2022: 4207-4218. 64 丁恒, 阮靖龙. 基于算法归因框架的LIS领域学者施引影响因素实证研究[J]. 图书情报知识, 2022, 39(2): 83-97.