1 Rotolo D, Hicks D, Martin B R. What is an emerging technology?[J]. Research Policy, 2015, 44(10): 1827-1843. 2 Xu H Y, Winnink J, Yue Z H, et al. Multidimensional scientometric indicators for the detection of emerging research topics[J]. Technological Forecasting and Social Change, 2021, 163: 120490. 3 Xu S, Hao L Y, An X, et al. Emerging research topics detection with multiple machine learning models[J]. Journal of Informetrics, 2019, 13(4): 100983. 4 Small H, Boyack K W, Klavans R. Identifying emerging topics in science and technology[J]. Research Policy, 2014, 43(8): 1450-1467. 5 刘小玲, 谭宗颖. 新兴技术主题识别方法研究进展[J]. 图书情报工作, 2020, 64(11): 145-152. 6 Yang Z L, Zhang W J, Yuan F, et al. Measuring topic network centrality for identifying technology and technological development in online communities[J]. Technological Forecasting and Social Change, 2021, 167: 120673. 7 赵蓉英, 田沛霖, 常茹茹. 数据科学研究的主题关联结构与发展演化态势——共词网络视角[J]. 图书馆学研究, 2021(11): 2-12. 8 吴江, 王凯利, 董克, 等. 信息计量领域网络分析方法应用研究综述[J]. 情报学报, 2021, 40(10): 1118-1128. 9 赵妍, 赵书良, 马秋微. 基于图核的异质信息网络链路预测方法[J]. 计算机应用研究, 2021, 38(10): 3125-3130. 10 Xu S, Hao L Y, An X, et al. Review on emerging research topics with key-route main path analysis[J]. Scientometrics, 2020, 122(1): 607-624. 11 Ye C L. Mapping the evolution of research topics using ATM and SNA[J]. Journal of Data and Information Science, 2014, 7(4): 46-62. 12 卢超, 侯海燕, DingYing, 等. 国外新兴研究话题发现研究综述[J]. 情报学报, 2019, 38(1): 97-110. 13 Deng S L, Xia S D, Hu J M, et al. Exploring the topic structure and evolution of associations in information behavior research through co-word analysis[J]. Journal of Librarianship and Information Science, 2021, 53(2): 280-297. 14 段庆锋, 潘小换. 利用社交媒体识别学科新兴主题研究[J]. 情报学报, 2017, 36(12): 1216-1223. 15 Huang L, Chen X, Ni X X, et al. Tracking the dynamics of co-word networks for emerging topic identification[J]. Technological Forecasting and Social Change, 2021, 170: 120944. 16 黄璐, 朱一鹤, 张嶷. 基于加权网络链路预测的新兴技术主题识别研究[J]. 情报学报, 2019, 38(4): 335-341. 17 黄月, 张昕. 基于主题词和LDA模型的知识结构识别研究[J]. 现代情报, 2022, 42(3): 48-56. 18 Xu S, Hao L Y, Yang G C, et al. A topic models based framework for detecting and forecasting emerging technologies[J]. Technological Forecasting and Social Change, 2021, 162: 120366. 19 周建, 刘炎宝, 刘佳佳. 情感分析研究的知识结构及热点前沿探析[J]. 情报学报, 2020, 39(1): 111-124. 20 Lu K, Yang G C, Wang X. Topics emerged in the biomedical field and their characteristics[J]. Technological Forecasting and Social Change, 2022, 174: 121218. 21 刘自强, 岳丽欣, 许海云, 等. 时序共词网络构建及其动态可视化研究[J]. 情报学报, 2020, 39(2): 186-198. 22 Wang Q. A bibliometric model for identifying emerging research topics[J]. Journal of the Association for Information Science and Technology, 2018, 69(2): 290-304. 23 赵国荣, 王文剑, 杨光. 一种基于组块分析的共现词提取方法[J]. 情报科学, 2017, 35(12): 129-135. 24 Xiao K J, Qian Z P, Qin B. A graphical decomposition and similarity measurement approach for topic detection from online news[J]. Information Sciences, 2021, 570: 262-277. 25 Mu L, Jin P Q, Zhao J, et al. Detecting evolutionary stages of events on social media: a graph-kernel-based approach[J]. Future Generation Computer Systems, 2021, 123: 219-232. 26 Katsurai M, Ono S. TrendNets: mapping emerging research trends from dynamic co-word networks via sparse representation[J]. Scientometrics, 2019, 121(3): 1583-1598. 27 Nikolentzos G, Siglidis G, Vazirgiannis M. Graph kernels: a survey[J]. Journal of Artificial Intelligence Research, 2021, 72: 943-1027. 28 王兆慧, 沈华伟, 曹婍, 等. 图分类研究综述[J]. 软件学报, 2022, 33(1): 171-192. 29 吴博, 梁循, 张树森, 等. 图神经网络前沿进展与应用[J]. 计算机学报, 2022, 45(1): 35-68. 30 Zhang J C, Fei J Y, Song X P, et al. An improved Louvain algorithm for community detection[J]. Mathematical Problems in Engineering, 2021, 2021: 1485592. 31 Zhang Y J, Ma J L, Wang Z J, et al. Collective topical PageRank: a model to evaluate the topic-dependent academic impact of scientific papers[J]. Scientometrics, 2018, 114(3): 1345-1372.