1 Vitali F, Peroni S. The argument model ontology (AMO)[EB/OL]. (2011-04-05) [2021-06-04]. https://sparontologies.github.io/amo/current/amo.html. 2 Ciccarese P, Groza T. Ontology of rhetorical blocks (ORB)[EB/OL]. (2011-06-05) [2021-06-04]. https://www.w3.org/2001/sw/hcls/notes/orb/. 3 Nasar Z, Jaffry S W, Malik M K. Information extraction from scientific articles: a survey[J]. Scientometrics, 2018, 117(3): 1931-1990. 4 Grishman R. Information extraction: techniques and challenges[C]// Proceedings of the International Summer School on Information Extraction: a Multidisciplinary Approach to an Emerging Information Technology. Heidelberg: Springer, 1997: 10-27. 5 Kiryakov A, Popov B, Terziev I, et al. Semantic annotation, indexing, and retrieval[J]. Journal of Web Semantics, 2004, 2(1): 49-79. 6 de Ribaupierre H, Falquet G. Extracting discourse elements and annotating scientific documents using the SciAnnotDoc model: a use case in gender documents[J]. International Journal on Digital Libraries, 2018, 19(2): 271-286. 7 李旭晖, 秦书倩, 吴燕秋, 等. 从计算角度看大规模数据中的知识组织[J]. 图书情报知识, 2018(6): 94-102. 8 Renear A H, Palmer C L. Strategic reading, ontologies, and the future of scientific publishing[J]. Science, 2009, 325(5942): 828-832. 9 Shotton D M. Semantic publishing: the coming revolution in scientific journal publishing[J]. Learned Publishing, 2009, 22(2): 85-94. 10 Ding Y, Song M, Han J, et al. Entitymetrics: measuring the impact of entities[J]. PLoS One, 2013, 8(8): e71416. 11 Wang Y Z, Zhang C Z. Using the full-text content of academic articles to identify and evaluate algorithm entities in the domain of natural language processing[J]. Journal of Informetrics, 2020, 14(4): 101091. 12 Toulmin S E. The uses of argument[M]. Cambridge: Cambridge University Press, 2003. 13 亚理斯多德. 修辞学[M]. 罗念生, 译. 北京: 生活?读书?新知三联书店, 1991. 14 谭笑, 刘兵. 科学文本研究中的修辞分析[J]. 科学学研究, 2009, 27(8): 1144-1148. 15 Mann W C, Thompson S A. Rhetorical structure theory: toward a functional theory of text organization[J]. Text - Interdisciplinary Journal for the Study of Discourse, 1988, 8(3): 243-281. 16 Soldatova L N, King R D. An ontology of scientific experiments[J]. Journal of the Royal Society, Interface, 2006, 3(11): 795-803. 17 The semantic publishing and referencing ontologies[EB/OL]. [2021-06-04]. http://www.sparontologies.net/. 18 吴思竹, 李峰, 张智雄. 知识资源的语义表示和出版模式研究——以Nanopublication为例[J]. 中国图书馆学报, 2013, 39(4): 102-109. 19 宋宁远, 裴雷, 王春迎. 科学论文语义增强的研究进展与趋势研判[J]. 图书情报工作, 2021, 65(1): 82-90. 20 于改红, 张智雄, 马娜. 科技文献语篇元素自动标注模型研究综述[J]. 图书情报工作, 2018, 62(15): 132-144. 21 Day R A. The origins of the scientific paper: the IMRAD format[J]. Journal of the American Medical Writers Association, 1989, 4(2): 16-18. 22 Hou S L, Zhang S H, Fei C Q. Rhetorical structure theory: a comprehensive review of theory, parsing methods and applications[J]. Expert Systems with Applications, 2020, 157: 113421. 23 Sollaci L B, Pereira M G. The introduction, methods, results, and discussion (IMRAD) structure: a fifty-year survey[J]. Journal of the Medical Library Association, 2004, 92(3): 364-367. 24 Shahid A, Afzal M T. Section-wise indexing and retrieval of research articles[J]. Cluster Computing, 2018, 21(1): 481-492. 25 Bertin M, Atanassova I. A study of lexical distribution in citation contexts through the IMRaD standard[C]// Proceedings of the First Workshop on Bibliometric-enhanced Information Retrieval Co-located with 36th European Conference on Information Retrieval. CEUR-WS.org, 2014: 5-12. 26 Hu Z G, Chen C M, Liu Z Y. Where are citations located in the body of scientific articles? A study of the distributions of citation locations[J]. Journal of Informetrics, 2013, 7(4): 887-896. 27 Ding Y, Liu X Z, Guo C, et al. The distribution of references across texts: some implications for citation analysis[J]. Journal of Informetrics, 2013, 7(3): 583-592. 28 Bertin M, Atanassova I, Larivière V, et al. The distribution of references in scientific papers: an analysis of the IMRaD structure[C]// Proceedings of the 14th International Conference of the International Society for Scientometrics and Informetrics, Conference, 2013: 591-603. 29 Tuarob S, Mitra P, Giles C L. A hybrid approach to discover semantic hierarchical sections in scholarly documents[C]// Proceedings of the 2015 13th International Conference on Document Analysis and Recognition. IEEE, 2015: 1081-1085. 30 陆伟, 黄永, 程齐凯. 学术文本的结构功能识别——功能框架及基于章节标题的识别[J]. 情报学报, 2014, 33(9): 979-985. 31 Luong M T, Nguyen T D, Kan M Y. Logical structure recovery in scholarly articles with rich document features[J]. International Journal of Digital Library Systems, 2010, 1(4): 1-23. 32 黄永, 陆伟, 程齐凯. 学术文本的结构功能识别——基于章节内容的识别[J]. 情报学报, 2016, 35(3): 293-300. 33 王东波, 高瑞卿, 叶文豪, 等. 不同特征下的学术文本结构功能自动识别研究[J]. 情报学报, 2018, 37(10): 997-1008. 34 Habib R, Afzal M T. Sections-based bibliographic coupling for research paper recommendation[J]. Scientometrics, 2019, 119(2): 643-656. 35 黄永, 陆伟, 程齐凯, 等. 学术文本的结构功能识别——基于段落的识别[J]. 情报学报, 2016, 35(5): 530-538. 36 Lu W, Huang Y, Bu Y, et al. Functional structure identification of scientific documents in computer science[J]. Scientometrics, 2018, 115(1): 463-486. 37 Ahmed I, Afzal M T. A systematic approach to map the research articles’ sections to IMRAD[J]. IEEE Access, 2020, 8: 129359-129371. 38 Li S B, Wang Q. A hybrid approach to recognize generic sections in scholarly documents[J]. International Journal on Document Analysis and Recognition (IJDAR), 2021, 24(4): 339-348. 39 Ma B W, Zhang C Z, Wang Y Z, et al. Enhancing identification of structure function of academic articles using contextual information[J]. Scientometrics, 2021, 127: 885-925. 40 王佳敏, 陆伟, 刘家伟, 等. 多层次融合的学术文本结构功能识别研究[J]. 图书情报工作, 2019, 63(13): 95-104. 41 Ibekwe-Sanjuan F. Repe?rage et annotation d’indices de nouveaute?s dans les e?crits scientifiques[C]// Actes du Colloques “Indice, Index, Indexation”. ADBS Editions, 2005: 261-275. 42 Swales J M. Research genres: explorations and applications[M]. Cambridge: Cambridge University Press, 2004. 43 McKnight L, Srinivasan P. Categorization of sentence types in medical abstracts[J]. AMIA Annual Symposium Proceedings, 2003, 2003: 440-444. 44 Ribeiro S, Yao J T, Rezende D A. Discovering IMRaD structure with different classifiers[C]// Proceedings of the 2018 IEEE International Conference on Big Knowledge. IEEE, 2018: 200-204. 45 沈思, 胡昊天, 叶文豪, 等. 基于全字语义的摘要结构功能自动识别研究[J]. 情报学报, 2019, 38(1): 79-88. 46 Yu G H, Zhang Z X, Liu H, et al. Masked sentence model based on BERT for move recognition in medical scientific abstracts[J]. Journal of Data and Information Science, 2019, 4(4): 42-55. 47 Zhang Z X, Liu H, Ding L P, et al. Moves recognition in abstract of research paper based on deep learning[C]// Proceedings of the 2019 ACM/IEEE Joint Conference on Digital Libraries. IEEE, 2019: 390-391. 48 张智雄, 刘欢, 丁良萍, 等. 不同深度学习模型的科技论文摘要语步识别效果对比研究[J]. 数据分析与知识发现, 2019, 3(12): 1-9. 49 Agarwal S, Yu H. Automatically classifying sentences in full-text biomedical articles into Introduction, Methods, Results and Discussion[J]. Bioinformatics, 2009, 25(23): 3174-3180. 50 Heffernan K, Teufel S. Identifying problem statements in scientific text[C]// Proceedings of the 6th International Conference on Computational Models of Argument - Workshop on Foundations of the Language of Argumentation. Potsdam: University of Potsdam, 2016, doi: 10.17863/CAM.13243. 51 张颖怡, 章成志. 基于学术论文全文的研究方法句自动抽取研究[J]. 情报学报, 2020, 39(6): 640-650. 52 章成志, 李铮. 基于学术论文全文的创新研究评价句抽取研究[J]. 数据分析与知识发现, 2019, 3(10): 12-19. 53 D’Souza J, Auer S, Pedersen T. SemEval-2021 Task 11: NLPContributionGraph - structuring scholarly NLP contributions for a research knowledge graph[C]// Proceedings of the 15th International Workshop on Semantic Evaluation. Stroudsburg: Association for Computational Linguistics, 2021: 364-376. 54 王末, 崔运鹏, 陈丽, 等. 基于深度学习的学术论文语步结构分类方法研究[J]. 数据分析与知识发现, 2020, 4(6): 60-68. 55 Hartley J. Improving the clarity of journal abstracts in psychology: the case for structure[J]. Science Communication, 2003, 24(3): 366-379. 56 Augenstein I, Das M, Riedel S, et al. SemEval 2017 Task 10: ScienceIE - extracting keyphrases and relations from scientific publications[C]// Proceedings of the 11th International Workshop on Semantic Evaluation. Stroudsburg: Association for Computational Linguistics, 2017: 546-555. 57 Taniguchi Y, Nanba H. Identification of bibliographic information written in both Japanese and English[C]// Proceedings of the International Conference on Theory and Practice of Digital Libraries. Heidelberg: Springer, 2008: 431-433. 58 Kondo T, Nanba H, Takezawa T, et al. Technical trend analysis by analyzing research papers’ titles[C]// Proceedings of the Language and Technology Conference: Challenges for Computer Science and Linguistics. Heidelberg: Springer, 2009: 512-521. 59 Nanba H, Kondo T, Takezawa T. Automatic creation of a technical trend map from research papers and patents[C]// Proceedings of the 3rd International Workshop on Patent Information Retrieval. New York: ACM Press, 2010: 11-16. 60 Gupta S, Manning C D. Analyzing the dynamics of research by extracting key aspects of scientific papers[C]// Proceedings of 5th International Joint Conference on Natural Language Processing. Asian Federation of Natural Language Processing, 2011: 1-9. 61 Tsai C T, Kundu G, Roth D. Concept-based analysis of scientific literature[C]// Proceedings of the 22nd ACM International Conference on Information & Knowledge Management. New York: ACM Press, 2013: 1733-1738. 62 Ammar W, Peters M E, Bhagavatula C, et al. The AI2 system at SemEval-2017 Task 10 (ScienceIE): semi-supervised end-to-end entity and relation extraction[C]// Proceedings of the 11th International Workshop on Semantic Evaluation. Stroudsburg: Association for Computational Linguistics, 2017: 592-596. 63 Luan Y, Ostendorf M, Hajishirzi H. Scientific information extraction with semi-supervised neural tagging[C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2017: 2641-2651. 64 Augenstein I, S?gaard A. Multi-task learning of keyphrase boundary classification[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2017: 341-346. 65 Singh M, Dan S, Agarwal S, et al. AppTechMiner: mining applications and techniques from scientific articles[C]// Proceedings of the 6th International Workshop on Mining Scientific Publications. New York: ACM Press, 2017: 1-8. 66 Heffernan K, Teufel S. Identifying problems and solutions in scientific text[J]. Scientometrics, 2018, 116(2): 1367-1382. 67 章成志, 张颖怡. 基于学术论文全文的研究方法实体自动识别研究[J]. 情报学报, 2020, 39(6): 589-600. 68 Hou L L, Zhang J, Wu O, et al. Method and dataset entity mining in scientific literature: a CNN + Bi-LSTM model with self-attention[J]. Knowledge-Based Systems, 2022, 235: 107621. 69 Luan Y, He L H, Ostendorf M, et al. Multi-task identification of entities, relations, and coreference for scientific knowledge graph construction[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2018: 3219-3232. 70 Jain S, van Zuylen M, Hajishirzi H, et al. SciREX: a challenge dataset for document-level information extraction[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2020: 7506-7516. 71 秦成磊, 章成志. 基于层次注意力网络模型的学术文本结构功能识别[J]. 数据分析与知识发现, 2020, 4(11): 26-42. 72 程齐凯, 李鹏程, 张国标, 等. 学术文本词汇功能识别——基于标题生成策略和注意力机制的问题方法抽取[J]. 情报学报, 2021, 40(1): 43-52. 73 冯鸾鸾, 李军辉, 李培峰, 等. 面向国防科技领域的技术和术语识别方法研究[J]. 计算机科学, 2019, 46(12): 231-236. 74 Yang A, Li S J. SciDTB: discourse dependency TreeBank for scientific abstracts[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2018: 444-449. 75 黄永, 陆伟, 程齐凯, 等. 学术文本的结构功能识别——在学术搜索中的应用[J]. 情报学报, 2016, 35(4): 425-431. 76 Kafkas ?, Pi X J, Marinos N, et al. Section level search functionality in Europe PMC[J]. Journal of Biomedical Semantics, 2015, 6: 7. 77 郑彦宁, 化柏林. 句子级知识抽取在情报学中的应用分析[J]. 情报理论与实践, 2011, 34(12): 1-4. 78 方龙, 李信, 黄永, 等. 学术文本的结构功能识别——在关键词自动抽取中的应用[J]. 情报学报, 2017, 36(6): 599-605. 79 姜艺, 黄永, 夏义堃, 等. 学术文本词汇功能识别——在关键词自动抽取中的应用[J]. 情报学报, 2021, 40(2): 152-162. 80 Treeratpituk P, Teregowda P, Huang J, et al. SEERLAB: a system for extracting keyphrases from scholarly documents[C]// Proceedings of the 5th International Workshop on Semantic Evaluation. Stroudsburg: Association for Computational Linguistics, 2010: 182-185. 81 程齐凯, 李信. 面向语义出版的学术文本词汇语义功能自动识别[J]. 数字图书馆论坛, 2017(8): 24-31. 82 卢超, 章成志, 王玉琢, 等. 语义特征分析的深化——学术文献的全文计量分析研究综述[J]. 中国图书馆学报, 2021, 47(2): 110-131. 83 Chowdhury G. TREC: experiment and evaluation in information retrieval[J]. Online Information Review, 2007, 31(5): 717-718. 84 Deng J, Dong W, Socher R, et al. ImageNet: a large-scale hierarchical image database[C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2009: 248-255.