张教萌, 师荣蓉. 基于利益相关者的突发事件网络舆情演化研究[J]. 情报学报, 2022, 41(5): 525-535.
Zhang Jiaomeng, Shi Rongrong. The Evolution of the Online Public Opinion of Stakeholders in Emergencies. 情报学报, 2022, 41(5): 525-535.
1 刘倩, 李晨亮. 基于社交媒体的话题演变研究综述[J]. 数据分析与知识发现, 2020, 4(8): 1-14. 2 吴晓娟. 基于微博文本的网络舆情主题演化分析——以“蓝色钱江放火案”为例[D]. 南京: 南京大学, 2018: 34-40. 3 Xiong J M, Hswen Y, Naslund J A. Digital surveillance for monitoring environmental health threats: a case study capturing public opinion from Twitter about the 2019 Chennai water crisis[J]. International Journal of Environmental Research and Public Health, 2020, 17(14): 5077. 4 Sadri A M, Hasan S, Ukkusuri S V, et al. Crisis communication patterns in social media during Hurricane Sandy[J]. Transportation Research Record: Journal of the Transportation Research Board, 2018, 2672(1): 125-137. 5 Yuan F X, Li M, Liu R. Understanding the evolutions of public responses using social media: Hurricane Matthew case study[J]. International Journal of Disaster Risk Reduction, 2020, 51: 101798. 6 王艳东, 李昊, 王腾, 等. 基于社交媒体的突发事件应急信息挖掘与分析[J]. 武汉大学学报·信息科学版, 2016, 41(3): 290-297. 7 Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297. 8 Wu W J, Li J L, He Z Y, et al. Tracking spatio-temporal variation of geo-tagged topics with social media in China: a case study of 2016 Hefei rainstorm[J]. International Journal of Disaster Risk Reduction, 2020, 50: 101737. 9 赵华, 章成志. 中英文突发事件话题演化对比研究——以H7N9微博为例[J]. 情报资料工作, 2016(3): 19-27. 10 Wang J Z, Zhou Y, Zhang W, et al. Concerns expressed by Chinese social media users during the COVID-19 pandemic: content analysis of Sina Weibo microblogging data[J]. Journal of Medical Internet Research, 2020, 22(11): e22152. 11 刘雅姝, 张海涛, 徐海玲, 等. 多维特征融合的网络舆情突发事件演化话题图谱研究[J]. 情报学报, 2019, 38(8): 798-806. 12 Neppalli V K, Caragea C, Squicciarini A, et al. Sentiment analysis during Hurricane Sandy in emergency response[J]. International Journal of Disaster Risk Reduction, 2017, 21: 213-222. 13 Zhang L, Wei J, Boncella R J. Emotional communication analysis of emergency microblog based on the evolution life cycle of public opinion[J]. Information Discovery and Delivery, 2020, 48(3): 151-163. 14 崔彦琛, 张鹏, 兰月新, 等. 面向时间序列的微博突发事件衍生舆情情感分析研究——以“6.22”杭州保姆纵火案衍生舆情事件为例[J]. 情报科学, 2019, 37(3): 119-126. 15 Huang W D, Wang Q, Cao J. Tracing public opinion propagation and emotional evolution based on public emergencies in social networks[J]. International Journal of Computers Communications & Control, 2018, 13(1): 129-142. 16 安璐, 欧孟花. 突发公共卫生事件利益相关者的社会网络情感图谱研究[J]. 图书情报工作, 2017, 61(20): 120-130. 17 Blei D M, Ng A Y, Jordan M I. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022. 18 Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space[OL]. (2013-09-07) https://arxiv.org/pdf/1301.3781v3.pdf. 19 Moody C E. Mixing Dirichlet topic models and word embeddings to make lda2vec[OL]. (2016-05-06). https://arxiv.org/pdf/1605.02019v1.pdf. 20 裘惠麟, 邵波. 多源数据环境下科研热点识别方法研究[J]. 图书情报工作, 2020, 64(5): 78-88. 21 李杰, 王雪可, 刘力宾, 等. 医保欺诈事件舆情传播的情感焦点与情感倾向演化研究——基于舆情客体视角[J]. 情报科学, 2020, 38(4): 77-82. 22 安璐, 杜廷尧, 李纲, 等. 突发公共卫生事件利益相关者在社交媒体中的关注点及演化模式[J]. 情报学报, 2018, 37(4): 394-405. 23 Maltoni C, Rossi C, Sánchez G. Improving resilience to emergencies through advanced cyber technologies: the I-REACT project[J]. GEOmedia, 2017, 21(3): 18-22. 24 谢科范, 赵湜, 陈刚, 等. 网络舆情突发事件的生命周期原理及集群决策研究[J]. 武汉理工大学学报(社会科学版), 2010, 23(4): 482-486. 25 Fink S. Crisis management: planning for the inevitable[M]. New York: American Management Association, 1986: 20. 26 于晶. 突发事件政府新闻发布的传播效果研究[D]. 上海: 复旦大学, 2010: 48-49. 27 吴亚楠. 传统媒体与自媒体的博弈研究——以突发公共事件报道为例[D]. 哈尔滨: 黑龙江大学, 2012: 29-30. 28 马缘园. 重大突发公共卫生事件中主流媒体与网络舆情有机运动关系探讨——以新冠肺炎疫情信息传播为例[J]. 新闻爱好者, 2020(9): 27-31.