1 王芳, 王向女. 我国情报学研究方法的计量分析: 以1999~2008年《情报学报》为例[J]. 情报学报, 2010, 29(4): 652-662. 2 Chu H T, Ke Q. Research methods: What’s in the name?[J]. Library & Information Science Research, 2017, 39(4): 284-294. 3 王芳, 陈锋, 祝娜, 等. 我国情报学理论的来源、应用及学科专属度研究[J]. 情报学报, 2016, 35(11): 1148-1164. 4 赵洪, 王芳. 理论术语抽取的深度学习模型及自训练算法研究[J]. 情报学报, 2018, 37(9): 923-938. 5 Gupta S, Manning C. Analyzing the dynamics of research by extracting key aspects of scientific papers[C]// Proceedings of the 5th International Joint Conference on Natural Language Processing. Asian Federation of Natural Language Processing, 2011: 1-9. 6 Singh M, Dan S, Agarwal S, et al. AppTechMiner: Mining applications and techniques from scientific articles[C]// Proceedings of the Joint Conference on Digital Libraries Joint Conference on Digital Libraries, Toronto, ON, Canada, 2017: 1-8. 7 Kova?evi? A, Konjovi? Z, Milosavljevi? B, et al. Mining methodologies from NLP publications: A case study in automatic terminology recognition[J]. Computer Speech & Language, 2012, 26(2): 105-126. 8 蒋婷. 学科领域本体学习及学术资源语义标注研究[D]. 南京: 南京大学, 2017. 9 王曰芬. 文献计量法与内容分析法的综合研究[D]. 南京: 南京理工大学, 2007. 10 储荷婷. 图书馆情报学界的研究方法:实践与发展[J]. 国家图书馆学刊, 2014, 23(3): 3-14. 11 Howison J, Bullard J. Software in the scientific literature: Problems with seeing, finding, and using software mentioned in the biology literature[J]. Journal of the Association for Information Science and Technology, 2016, 67(9): 2137-2155. 12 Heffernan K, Teufel S. Identifying problems and solutions in scientific text[J]. Scientometrics, 2018, 116(2): 1367-1382. 13 Zadeh B Q, Handschuh S. Investigating context parameters in technology term recognition[C]// Proceedings of the COLING Workshop on Synchronic and Diachronic Approaches to Analyzing Technical Language. Stroudsburg: Association for Computational Linguistics, 2014: 1-10. 14 程齐凯, 李信. 面向语义出版的学术文本词汇语义功能自动识别[J]. 数字图书馆论坛, 2017(8): 24-31. 15 Luan Y, Ostendorf M, Hajishirzi H. Scientific information extraction with semi-supervised neural tagging[C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2017: 2641-2651. 16 Ammar W, Peters M, Bhagavatula C, et al. The AI2 system at SemEval-2017 Task 10 (ScienceIE): Semi-supervised end-to-end entity and relation extraction[C]// Proceedings of the 11th International Workshop on Semantic Evaluation. Stroudsburg: Association for Computational Linguistics, 2017: 592-596. 17 Song Y, Shi S M, Li J, et al. Directional skip-gram: Explicitly distinguishing left and right context for word embeddings[C]// Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2018, 2: 175-180. 18 Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2013, 2: 3111-3119. 19 Jebbara S, Cimiano P. Improving opinion-target extraction with character-level word embeddings[C]// Proceedings of the First Workshop on Subword and Character Level Models in NLP. Stroudsburg: Association for Computational Linguistics, 2017: 159-167. 20 Graves A, Schmidhuber J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures[J]. Neural Networks, 2005, 18(5-6): 602-610. 21 Lample G, Ballesteros M, Subramanian S, et al. Neural architectures for named entity recognition[C]// Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2016: 260-270. 22 Zhang Q, Wang Y, Gong Y, et al. Keyphrase extraction using deep recurrent neural networks on twitter[C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2016: 836-845. 23 Zhang H P, Yu H K, Xiong D Y, et al. HHMM-based Chinese lexical analyzer ICTCLAS[C]// Proceedings of the Second Workshop on Chinese Language Processing. Stroudsburg: Association for Computational Linguistics, 2003: 184-187. 24 Lafferty J D, McCallum A, Pereira F C N. Conditional random fields: Probabilistic models for segmenting and labeling sequence data[C]// Proceedings of the Eighteenth International Conference on Machine Learning.San Francisco: Morgan Kaufmann Publishers, 2001: 282-289. 25 严怡民. 情报学概论[M]. 武汉: 武汉大学出版社, 1983. 26 包昌火. 情报研究方法论[M]. 北京: 科学技术文献出版社, 1990.