马超, 李纲, 陈思菁, 毛进, 张霁. 基于多模态数据语义融合的旅游在线评论有用性识别研究[J]. 情报学报, 2020, 39(2): 199-207.
Ma Chao, Li Gang, Chen Sijing, Mao Jin, Zhang Ji. Research on Usefulness Recognition of Tourism Online Reviews Based on Multimodal Data Semantic Fusion. 情报学报, 2020, 39(2): 199-207.
1 张补宏, 周旋, 广新菊. 国内外旅游在线评论研究综述[J]. 地理与地理信息科学, 2017, 33(5): 119-126. 2 徐峰. 在线信息对不同城市类型酒店网上预订量的影响研究——以携程网数据为例[J]. 商业经济与管理, 2013(7): 73-80. 3 张思豆, 李君轶, 魏欢. 旅游电商平台在线评论的可信度研究——以“阿里旅行·西安东线一日游”旅游产品为例[J]. 旅游学刊, 2016, 31(11): 74-84. 4 MudambiS M, SchuffD. What makes a helpful review? A study of customer reviews on Amazon. com[J]. MIS Quarterly, 2010, 34(1): 185-200. 5 SussmanS W, SiegalW S. Informational influence in organizations: An integrated approach to knowledge adoption[J]. Information Systems Research, 2003, 14(1): 47-65. 6 卓四清, 冯永洲. 在线评论有用性影响因素实证研究——基于Tripadvisor.com酒店评论数据[J]. 现代情报, 2015, 35(4): 52-56, 74. 7 GhoseA, IpeirotisP G. Estimating the helpfulness and economic impact of product reviews: Mining text and reviewer characteristics[J]. IEEE Transactions on Knowledge and Data Engineering, 2011, 23(10): 1498-1512. 8 殷国鹏. 消费者认为怎样的在线评论更有用?——社会性因素的影响效应[J]. 管理世界, 2012(12): 115-124. 9 KorfiatisN, García-BariocanalE, Sánchez-AlonsoS. Evaluating content quality and helpfulness of online product reviews: The interplay of review helpfulness vs. review content[J]. Electronic Commerce Research and Applications, 2012, 11(3): 205-217. 10 吴江, 刘弯弯. 什么样的评论更容易获得有用性投票——以亚马逊网站研究为例[J]. 数据分析与知识发现, 2017(9): 16-27. 11 黄麒, 张心雨, 刘嘉月. 基于在线购物数据评论的有用性影响因素研究[J]. 中国市场, 2017(1): 28-31. 12 闵庆飞, 覃亮, 张克亮. 影响在线评论有用性的因素研究[J]. 管理评论, 2017, 29(10): 95-107. 13 霍红, 张晨鑫. 在线评论质量丰富度对购买异质性产品的影响[J]. 企业经济, 2018, 37(6): 77-83. 14 汪旭晖, 陈鑫. 用户生成内容的图文匹配对消费者感知有用性的影响[J]. 管理科学, 2018, 31(1): 101-115. 15 MaY F, XiangZ, DuQ Z, et al. Effects of user-provided photos on hotel review helpfulness: An analytical approach with deep leaning[J]. International Journal of Hospitality Management, 2018, 71: 120-131. 16 Baltru?aitisT, AhujaC, MorencyL P. Multimodal machine learning: A survey and taxonomy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(2): 423-443. 17 BernardiR, CakiciR, ElliottD, et al. Automatic description generation from images: A survey of models, datasets, and evaluation measures[J]. Journal of Artificial Intelligence Research, 2016, 55: 409-442. 18 MaoJ H, XuW, YangY, et al. Deep captioning with multimodal recurrent neural networks (m-RNN)[OL]. https://arxiv.org/abs/1412.6632. 19 Vinyals O, Toshev A, Bengio S,et al. Show and tell: A neural image caption generator[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2015: 3156-3164. 20 Song Y, Shi S M, Li J,et al. Directional skip-gram: Explicitly distinguishing left and right context for word embeddings[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2018, 2: 175-180. 21 Vaswani A, Shazeer N, Parmar N,et al. Attention is all you need[C]// Proceedings of the Conference on Advances in Neural Information Processing Systems. 2017: 5998-6008. 22 DevlinJ, ChangM W, LeeK, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[OL]. https://arxiv.org/abs/1810.04805. 23 HubelD H, WieselT N. Receptive fields and functional architecture of monkey striate cortex[J]. The Journal of Physiology, 1968, 195(1): 215-243 24 He K M, Zhang X Y, Ren S Q,et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 770-778. 25 Huang G, Liu Z, van der Maaten L,et al. Densely connected convolutional networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 3. 26 Szegedy C, Vanhoucke V, Ioffe S,et al. Rethinking the inception architecture for computer vision[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 2818-2826. 27 IandolaF N, HanS, MoskewiczM W, et al. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size[OL]. https://arxiv.org/abs/1602.07360. 28 刘宪立, 赵昆. 在线评论有用性关键影响因素识别研究[J]. 现代情报, 2017, 37(1): 94-99, 105. 29 张鑫, 朱振中. 在线评论有用性影响因素研究综述[J]. 商业经济研究, 2017(17): 82-84. 30 秦芬, 李扬. 用户生成内容激励机制研究综述及展望[J]. 外国经济与管理, 2018, 40(8): 141-152. 31 SunY C, DongX J, McIntyreS. Motivation of user-generated content: Social connectedness moderates the effects of monetary rewards[J]. Marketing Science, 2017, 36(3): 329-337. 32 ToubiaO, StephenA T. Intrinsic vs. image-related utility in social media: Why do people contribute content to twitter?[J]. Marketing Science, 2013, 32(3): 368-392.