1 李景, 苏晓鹭, 钱平. 构建领域本体的方法[J]. 计算机与农业, 2003(7): 7-10. 2 任飞亮, 沈继坤, 孙宾宾, 等. 从文本中构建领域本体技术综述[J]. 计算机学报, 2019, 42(3): 654-676. 3 杜小勇, 李曼, 王珊. 本体学习研究综述[J]. 软件学报, 2006, 17(9): 1837-1847. 4 WongW, LiuW, BennamounM. Ontology learning from text[J]. ACM Computing Surveys, 2012, 44(4): 1-36. 5 CimianoP. Ontology learning and population from text: Algorithms, evaluation and applications[M]. New York: Springer US, 2006: 3-7. 6 揭春雨, 冯志伟. 基于知识本体的术语定义(下)[J]. 术语标准化与信息技术, 2009(3): 14-23. 7 张雷瀚, 吕学强, 李卓, 等. 领域本体术语的抽取方法研究[J]. 情报学报, 2014, 33(2): 167-174. 8 LeeC M, HuangC K, TangK M, et al. Iterative machine-learning Chinese term extraction[C]// Proceedings of the International Conference on Asian Digital Libraries. Heidelberg: Springer, 2012, 7634: 309-312. 9 闭炳华. 基于word2vec的数字图书馆本体构建技术研究[J]. 现代电子技术, 2016, 39(15): 90-94. 10 王红, 张昊, 史金钏. 基于LDA的领域本体概念获取方法研究[J]. 计算机工程与应用, 2018, 54(13): 252-257. 11 蒋婷, 孙建军. 领域学术本体概念等级关系抽取研究[J]. 情报学报, 2017, 36(10): 1080-1092. 12 RenF L. A cheap domain ontology construction method based on graph generation and conversion method[J]. Journal of Information and Computational Science, 2012, 9(18): 5823-5830. 13 贾秀玲, 文敦伟. 一种本体学习中分类关系提取方法的研究[J]. 计算机技术与发展, 2007, 17(10): 31-33, 36. 14 HearstM A. Automatic acquisition of hyponyms from large text corpora[C]// Proceedings of the 14th Conference on Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 1992: 539-545. 15 温春, 石昭祥, 张霄. 本体概念层次获取方法综述[J]. 计算机应用与软件, 2010, 27(9): 103-107. 16 ZengD J, LiuK, LaiS W, et al. Relation classification via convolutional deep neural network[C]// Proceedings of the 25th International Conference on Computational Linguistics. Dublin: Dublin City University; Stroudsburg: Association for Computational Linguistics, 2014: 2335-2344. 17 李杰, 陈超美. CiteSpace: 科技文本挖掘及可视化[M]. 北京: 首都经济贸易大学出版社, 2016: 12-50. 18 HintonG E. Learning distributed representations of concepts[C]// Proceedings of the Eighth Conference of the Cognitive Science Society. Seattle: Cognitive Science Society, 1986: 1-12. 19 MikolovT, ChenK, CorradoG, et al. Efficient estimation of word representations in vector space[OL]. https://arxiv.org/abs/1301.3781. 20 LahitaniA R, PermanasariA E, SetiawanN A. Cosine similarity to determine similarity measure: Study case in online essay assessment[C]// Proceedings of the 4th International Conference on Cyber and IT Service Management. New York: IEEE, 2016. 21 刘建伟, 崔立鹏, 罗雄麟. 概率图模型的稀疏化学习[J]. 计算机学报, 2016, 39(8): 1597-1611. 22 FreyB J, DueckD. Clustering by passing messages between data points[J]. Science, 2007, 315(5814): 972-976. 23 郭崇慧, 曹梦月. GMAP: 一种基于AP聚类的共词分析方法[J]. 情报学报, 2017, 36(11): 1192-1200. 24 SunL L, GuoC H. Incremental affinity propagation clustering based on message passing[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(11): 2731-2744. 25 PrimR C. Shortest connection networks and some generalizations[J]. Bell System Technical Journal, 1957, 36(6): 1389-1401. 26 WarshallS. A theorem on Boolean matrices[J]. Journal of the ACM, 1962, 9(1): 11-12. 27 黄昌宁, 赵海. 中文分词十年回顾[J]. 中文信息学报, 2007, 21(3): 8-19. 28 ZhaoH, CaiD, HuangC N, et al. Chinese word segmentation: Another decade review (2007-2017)[OL]. https://arxiv.org/abs/1901.06079v1. 29 李五锁. 基于改进的深度信念网的中文电子病历命名实体识别方法研究[D]. 北京: 北京化工大学, 2018: 3-5. 30 申站. 基于神经网络的中文电子病历命名实体识别[D]. 北京: 北京邮电大学, 2018: 3-5.