罗鹏程, 王一博, 王继民. 基于深度预训练语言模型的文献学科自动分类研究[J]. 情报学报, 2020, 39(10): 1046-1059.
Luo Pengcheng, Wang Yibo, Wang Jimin. Automatic Discipline Classification for Scientific Papers Based on a Deep Pre-training Language Model. 情报学报, 2020, 39(10): 1046-1059.
1 教育部. 学位授予和人才培养学科目录(2018年4月更新)[EB/OL]. [2019-10-22]. http://www.moe.gov.cn/s78/A22/xwb_left/moe_833/201804/t20180419_333655.html. 2 肖珑. 支持“双一流”建设的高校图书馆服务创新趋势研究[J]. 大学图书馆学报, 2018, 36(5): 43-51. 3 吴爱芝, 肖珑, 张春红, 等. 基于文献计量的高校学科竞争力评估方法与体系[J]. 大学图书馆学报, 2018, 36(1): 62-67, 26. 4 北京大学图书馆. 北京大学科学研究前沿(2018年版)[EB/OL]. [2019-08-18]. https://www.lib.pku.edu.cn/portal/cn/fw/kyzc/zhishi chanquan. 5 马芳珍, 李峰, 肖珑. 基于知识服务的海洋学科门户建设[J]. 大学图书馆学报, 2018, 36(3): 46-51. 6 学位中心关于第四轮学科评估成果及人员归属说明[EB/OL]. [2019-08-18]. http://yjs.jlict.edu.cn/show.aspx?id=476&cid=50. 7 CSSC category to Web of Science category mapping 2012[EB/OL]. [2019-08-18]. http://help.incites.clarivate.com/inCites2Live/filterValuesGroup/researchAreaSchema/chinaSCADCSubjCat.html. 8 蔺梅芳, 刘静. 基于InCites学科映射的一级学科文献计量分 析——以电子科技大学为例[J]. 四川图书馆学报, 2015(3): 71-73. 9 刘虹, 徐嘉莹. 上海市高校学科国际影响力评价——基于InCites数据库学科映射的文献计量分析[J]. 复旦教育论坛, 2014, 12(4): 29-34. 10 刘文娟. 国内三种期刊数据库学科分类之比较[J]. 中国信息化, 2019(1): 83-84. 11 詹萌. 学科(专业)分类与文献分类之间的映射关系研究[J]. 情报理论与实践, 2013, 36(10): 40-43, 35. 12 单连慧, 赵迎光, 钱庆. 基于词汇相似度的医学分类体系映射研究与实现[J]. 医学信息学杂志, 2016, 37(11): 46-50. 13 梁瑛, 邹小筑. ESI工程类与中国教育部学科分类的对比研究[J]. 农业图书情报学刊, 2016, 28(1): 76-81. 14 Gl?nzel W, Schubert A, Czerwon H J. An item-by-item subject classification of papers published in multidisciplinary and general journals using reference analysis[J]. Scientometrics, 1999, 44(3): 427-439. 15 Fang H. Classifying research articles in multidisciplinary sciences journals into subject categories[J]. Knowledge Organization, 2015, 42(3): 139-153. 16 Taheriyan M. Subject classification of research papers based on interrelationships analysis[C]// Proceedings of the 2011 Workshop on Knowledge Discovery, Modeling and Simulation, New York: ACM Press, 2011: 39-44. 17 Gómez-Nú?ez A J, Vargas-Quesada B, de Moya-Anegón F, et al. Improving SCImago Journal & Country Rank (SJR) subject classification through reference analysis[J]. Scientometrics, 2011, 89(3): 741-758. 18 王昊, 严明, 苏新宁. 基于机器学习的中文书目自动分类研究[J]. 中国图书馆学报, 2010, 36(6): 28-39. 19 杨敏, 谷俊. 基于SVM的中文书目自动分类及应用研究[J]. 图书情报工作, 2012, 56(9): 114-119. 20 李湘东, 阮涛. 内容相近类目实现自动分类时相关分类技术的比较研究——以《中图法》E271和E712.51为例[J]. 图书馆杂志, 2018, 37(6): 11-21, 30. 21 王昊, 叶鹏, 邓三鸿. 机器学习在中文期刊论文自动分类研究中的应用[J]. 现代图书情报技术, 2014(3): 80-87. 22 郭利敏. 基于卷积神经网络的文献自动分类研究[J]. 图书与情报, 2017(6): 96-103. 23 傅余洋子. 基于LSTM模型的中文图书分类研究[D]. 南京: 南京大学, 2017. 24 董微, 赵捷. 基于密度分布单类支持向量机的科技文献分类研究[J]. 情报工程, 2018, 4(3): 67-72. 25 王效岳, 白如江, 王晓笛, 等. 海量网络学术文献自动分类系统[J]. 图书情报工作, 2013, 57(16): 117-122. 26 Devlin J, Chang M W, Lee K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2019: 4171-4186. 27 Sun Y, Wang S H, Li Y K, et al. ERNIE: Enhanced representation through knowledge integration[OL]. [2019-08-18]. https://arxiv.org/abs/1904.09223v1. 28 Hu D C. An introductory survey on attention mechanisms in NLP problems[C]// Proceedings of SAI Intelligent Systems Conference. Cham: Springer, 2020: 432-448. 29 Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems, Red Hook: Curran Associates Inc., 2017: 6000-6010. 30 Tenney I, Das D, Pavlick E. BERT rediscovers the classical NLP pipeline[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2019: 4593-4601. 31 TensorFlow code and pre-trained models for BERT[EB/OL]. [2019-08-18]. https://github.com/google-research/bert. 32 An implementation of ERNIE for language understanding[EB/OL]. [2019-08-18]. https://github.com/PaddlePaddle/ERNIE. 33 scikit-learn: Machine learning in python[EB/OL]. [2019-08-18]. https://scikit-learn.org/. 34 结巴中文分词[EB/OL]. [2019-08-18]. https://github.com/fxsjy/jieba. 35 Kim Y. Convolutional neural networks for sentence classification[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2014: 1746-1751. 36 Song Y, Shi S M, Li J, et al. Directional skip-gram: Explicitly distinguishing left and right context for word embeddings[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2018: 175-180. 37 Grave E, Bojanowski P, Gupta P, et al. Learning word vectors for 157 languages[C]// Proceedings of the Eleventh International Conference on Language Resources and Evaluation, European Language Resources Association, 2018: 3483-3487. 38 Li S, Zhao Z, Hu R F, et al. Analogical reasoning on Chinese morphological and semantic relations[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Stroudsburg: Association for Computational Linguistics, 2018: 138-143. 39 谢靖, 钱力, 师洪波, 等. 科研学术大数据的精准服务架构设计[J]. 数据分析与知识发现, 2019, 3(1): 63-71. 40 Beltagy I, Cohan A, Lo K. SciBERT: Pretrained contextualized embeddings for scientific text[OL]. [2019-08-18]. https://arxiv.org/abs/1903.10676.