Research on Abstract Structure Function Automatic Recognition Based on Full Character Semantics
Shen Si1, Hu Haotian2, Ye Wenhao2, Wang Dongbo2
1. School of Economics & Management, Nanjing University of Science and Technology, Nanjing 210094; 2. College of Information Science and Technology, Nanjing Agricultural University, Nanjing 210095
沈思, 胡昊天, 叶文豪, 王东波. 基于全字语义的摘要结构功能自动识别研究[J]. 情报学报, 2019, 38(1): 79-88.
Shen Si, Hu Haotian, Ye Wenhao, Wang Dongbo. Research on Abstract Structure Function Automatic Recognition Based on Full Character Semantics. 情报学报, 2019, 38(1): 79-88.
[1] 黄玲, 姜小兰. 我国科技期刊摘要存在的问题及原因浅析[J]. 长江科学院院报, 2014, 31(7): 114-118. [2] 张郁佳. 中英语言学学术期刊摘要的元功能分析[J]. 黑龙江生态工程职业学院学报, 2017, 30(4): 148-150. [3] 高建群, 吴玲, 施业. 学术论文摘要的规范表达[J]. 东南大学学报(哲学社会科学版), 2003(2): 114-117. [4] Silva J, Coheur L, Mendes A C, et al. From symbolic to sub-symbolic information in question classification[J]. Artificial Intelligence Review, 2011, 35(2): 137-154. [5] Cui L, Zhang D, Liu S, et al. Learning topic representation for SMT with neural networks[C]//Proceedings of Conference of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2014: 133-143. [6] Wang D, Nyberg E. A long short-term memory model for answer sentence selection in question answering[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2015: 707-712. [7] 郑秋生, 翟琳琳. 基于改进Rocchio算法的短文本自动分类研究[J]. 中原工学院学报, 2013, 24(1): 70-73. [8] 林小俊, 张猛, 暴筱, 等. 基于概念网络的短文本分类方法[J]. 计算机工程, 2010, 36(21): 4-6. [9] 孙建旺, 吕学强, 张雷瀚. 基于语义与最大匹配度的短文本分类研究[J]. 计算机工程与设计, 2013, 34(10): 3613-3618. [10] 张群, 王红军, 王伦文. 词向量与LDA相融合的短文本分类方法[J]. 现代图书情报技术, 2016(12): 27-35. [11] 李湘东, 曹环, 丁丛, 等. 利用《知网》和领域关键词集扩展方法的短文本分类研究[J]. 现代图书情报技术, 2015(2): 31-38. [12] Zhou C, Sun C, Liu Z, et al. A c-LSTM neural network for text classification[J]. arXiv Preprint arXiv: 1511.08630, 2015. [13] Dong L, Wei F, Zhou M, et al. Question answering over freebase with multi-column convolutional neural networks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2015: 260-269. [14] Qu Y, Liu J, Kang L, et al. Question answering over freebase via attentive RNN with similarity matrix based CNN[J]. arXiv: 1804.03317, 2018. [15] Zhang D, Wang D. Relation classification via recurrent neural network[J]. arXiv Preprint arXiv: 1508.01006, 2015. [16] Ji W. Structure regularized bidirectional recurrent convolutional neural network for relation classification[J]. arXiv Preprint arXiv: 1711.02509, 2017. [17] 孙晓, 彭晓琪, 胡敏, 等. 基于多维扩展特征与深度学习的微博短文本情感分析[J]. 电子与信息学报, 2017, 39(9): 2048-2055. [18] 殷亚博, 杨文忠, 杨慧婷, 等. 基于卷积神经网络和KNN的短文本分类算法研究[J]. 计算机工程, 2018, 44(7): 193-198. [19] 彭玉青, 宋初柏, 闫倩, 等. 基于VDCNN和LSTM混合模型的中文文本分类研究[J]. 计算机工程, 2017, 43(11): 123-130. [20] 薛涛, 王雅玲, 穆楠. 基于词义消歧的卷积神经网络文本分类模型[J]. 计算机应用研究, 2018, 35(10): 1-8. [21] 陆伟, 黄永, 程齐凯. 学术文本的结构功能识别——功能框架及基于章节标题的识别[J]. 情报学报, 2014, 33(9): 979-985. [22] 黄永, 陆伟, 程齐凯. 学术文本的结构功能识别——基于章节内容的识别[J]. 情报学报, 2016, 35(3): 293-300. [23] 黄永, 陆伟, 程齐凯, 等. 学术文本的结构功能识别——基于段落的识别[J]. 情报学报, 2016, 35(5): 530-538. [24] 王立非, 刘霞. 英语学术论文摘要语步结构自动识别模型的构建[J]. 外语电化教学, 2017(2): 45-50, 64. [25] Pham T H, Le-Hong P. End-to-end recurrent neural network models for vietnamese named entity recognition: Word-level vs. character-level[C]// Proceedings of the 15th International Conference of the Pacific Association for Computational Linguistics. Springer, 2017: 46-53. [26] Hochreiter S, Schmidhube R J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. [27] Cross J, Huang L. Incremental parsing with minimal features using bi-directional LSTM[J]. arXiv Preprint arXiv: 1606.06406, 2016. [28] Hearst M A, Dumais S T, Osuna E, et al. Support vector machines[J]. IEEE Intelligent Systems and Their applications, 1998, 13(4): 18-28. [29] Lafferty J, McCallum A, Pereira F. Conditional random fields: Probabilistic models for segmenting and labeling sequence data[C]// Proceedings of the Eighteenth International Conference on Machine Learning, 2001: 282-289. [30] Huang Z, Xu W, Yu K. Bidirectional LSTM-CRF models for sequence tagging[J]. arXiv Preprint arXiv: 1508.01991, 2015.