林泽斐, 欧石燕. 多特征融合的中文命名实体链接方法研究[J]. 情报学报, 2019, 38(1): 68-78.
Lin Zefei, Ou Shiyan. Research on Chinese Named Entity Linking Based on Multi-feature Fusion. 情报学报, 2019, 38(1): 68-78.
[1] Nouvel D, Ehrmann M, Rosset S. Named entities for computational linguistics[M]. New York: John Wiley & Sons, Inc., 2016: 153-156. [2] Hughes K, Nothman J, Curran J R. Trading accuracy for faster named entity linking[C]// Proceedings of the Australasian Language Technology Association Workshop. Penrith: Western Sydney University, 2014: 32-40. [3] Zhang W, Su J, Tan C L, et al. Entity linking leveraging: automatically generated annotation[C]// Proceedings of the 23rd International Conference on Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2010: 1290-1298. [4] Anastácio I, Martins B, Calado P. Supervised learning for linking named entities to knowledge base entries[C]// Proceedings of TAC. Gaithersburg: NIST, 2011: 1-12. [5] McNamee P, Mayfield J, Lawrie D, et al. Cross-language entity linking[C]// Proceedings of the 5th International Joint Conference on Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2011: 255-263. [6] Francis-Landau M, Durrett G, Klein D. Capturing semantic similarity for entity linking with convolutional neural networks[C]// Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2016: 1256-1261. [7] Sun Y, Lin L, Tang D, et al. Modeling mention, context and entity with neural networks for entity disambiguation[C]// Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence. California: IJCAI, 2015: 1333-1339. [8] Han X, Sun L, Zhao J. Collective entity linking in web text: a graph-based method[C]// Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2011: 765-774. [9] Hoffart J, Yosef M A, Bordino I, et al. Robust disambiguation of named entities in text[C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2011: 782-792. [10] Frontini F, Brando C, Ganascia J G. Semantic Web based named entity linking for digital humanities and heritage texts[C]// Proceedings of the First International Workshop Semantic Web for Scientific Heritage at the 12th ESWC 2015 Conference. Berlin: Springer, 2015: 77-88. [11] Guo Y, Che W, Liu T, et al. A graph-based method for entity linking[C]// Proceedings of 5th International Joint Conference on NLP. California: IJCAI, 2011: 1010-1018. [12] Guo Z, Barbosa D. Robust entity linking via random walks[C]// Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management. New York: ACM Press, 2014: 499-508. [13] Rao D, McNamee P, Dredze M. Entity linking: Finding extracted entities in a knowledge base[M]// Multi-source, Multilingual Information Extraction and Summarization. Berlin: Springer, 2013: 93-115. [14] Che W, Li Z, Liu T. LTP: A Chinese language technology platform[C]// Proceedings of the 23rd International Conference on Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2010: 13-16. [15] 黄惠贤, 赵泽轩. 二十五史人名大辞典电子版[EB/OL]. [2018-03-10]. http://mall.cnki.net/reference/detail_R200610137.html. [16] 史为乐, 邓自欣, 朱玲玲. 中国历史地名大辞典电子版[EB/OL]. [2018-03-10]. http://mall.cnki.net/reference/detail_R200606116.html. [17] HIT-SCIR. LTP词性标注集[EB/OL]. [2018-02-05]. http://ltp.readthedocs.io/zh_CN/latest/appendix.html. [18] 百度百科. 百科词条数统计[EB/OL]. [2018-01-05]. https://baike.baidu.com. [19] Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space[EB/OL]. [2018-03-15]. https://arxiv.org/pdf/1301.3781.pdf. [20] Le Q, Mikolov T. Distributed representations of sentences and documents[C]// Proceedings of the 31st International Conference on Machine Learning. New York: ACM Press, 2014: 1188-1196. [21] Xing C, Wang D, Zhang X, et al. Document classification with distributions of word vectors[C]// Proceedings of 2014 Annual Summit and Conference Asia-Pacific Signal and Information Processing Association. Piscataway: IEEE, 2014: 1-5. [22] Ou S, Kim H. Unsupervised citation sentence identification based on similarity measurement[C]// Proceedings of 2018 International Conference on Information. Berlin: Springer, 2018: 384-394. [23] Blei D, Lafferty J. Dynamic topic models[C]// Proceedings of the 23rd International Conference on Machine Learning. New York: ACM Press, 2006: 113-120. [24] Hoffman M, Bach F R, Blei D M. Online learning for Latent Dirichlet Allocation[C]// Proceedings of Conference on Neural Information Processing Systems. New York: Curran Associates, 2010: 856-864. [25] Joulin A, Grave E, Bojanowski P, et al. Bag of tricks for efficient text classification[C]// Proceedings of the 15th Conference of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2017: 427-431. [26] Boldi P, Santini M, Vigna S. PageRank as a function of the damping factor[C]// Proceedings of the 14th International Conference on World Wide Web. New York: ACM Press, 2005: 557-566. [27] McNamee P, Dredze M, Gerber A, et al. HLTCOE approaches to knowledge base population[C]// Proceedings of the 2nd Text Analysis Conference. Gaithersburg: National Institute of Standards and Technology, 2009. [28] Li H. A short introduction to learning to rank[J]. IEICE Transactions on Information and Systems, 2011, 94(10): 1854-1862. [29] Cao Y, Xu J, Liu T Y, et al. Adapting ranking SVM to document retrieval[C]// Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2006: 186-193. [30] Joachims T. SVM-rank: Support Vector Machine for ranking[EB/OL]. [2018-04-03]. https://www.cs.cornell.edu/people/tj/svm_ light/svm_rank.html. [31] Witten I H, Frank E, Hall M A, et al. Data mining: Practical machine learning tools and techniques[M]. Burlington: Morgan Kaufmann Publishers, 2011: 154-155. [32] 复旦大学计算机信息与技术系国际数据库中心NLP小组. 文本分类语料库[EB/OL]. [2018-04-12]. http://www.nlpir.org/?action-viewnews-itemid-103.