赵洪, 王芳. 理论术语抽取的深度学习模型及自训练算法研究[J]. 情报学报, 2018, 37(9): 923-938.
Zhao Hong, Wang Fang. A Deep Learning Model and Self-Training Algorithm for Theoretical Terms Extraction. 情报学报, 2018, 37(9): 923-938.
[1] 维基百科. 理论[EB/OL]. [2018-01-25].https://zh.wikipedia.org/ wiki/%E7%90%86%E8%AB%96. [2] 王芳, 陈锋, 祝娜, 等. 我国情报学理论的来源、应用及学科专属度研究[J]. 情报学报, 2016, 35(11): 1148-1164. [3] 陈锋, 翟羽佳, 王芳. 基于条件随机场的学术期刊中理论的自动识别方法[J]. 图书情报工作, 2016, 60(2): 122-128. [4] 陆伟, 孟睿, 刘兴帮. 面向引用关系的引文内容标注框架研究[J]. 中国图书馆学报, 2014, 35(6): 93-104. [5] 徐庶睿, 卢超, 章成志. 术语引用视角下的学科交叉测度——以PLOS ONE上六个学科为例[J]. 情报学报, 2017, 36(8): 809-820. [6] Huang Z, Xu W, Yu K. Bidirectional LSTM-CRF models for sequence tagging[J]. arXiv preprint arXiv:1508.01991, 2015. [7] Rondeau M A, Su Y.LSTM-based NeuroCRFs for named entity recognition[C]// INTERSPEECH 2016: The 17th Annual Conference of the International Speech Communication Association, San Francisco, CA, USA, 2016: 665-669. [8] 化柏林. 针对中文学术文献的情报方法术语抽取[J]. 现代图书情报技术, 2013(6): 68-75. [9] Collobert R, Weston J, Karlen M, et al.Natural language processing (almost) from Scratch[J]. Journal of Machine Learning Research, 2011, 12(1): 2493-2537. [10] Sundermeyer M, Schlüter R, Ney H.LSTM neural networks for language modeling[C]// INTERSPEECH 2012: The 13th Annual Conference of the International Speech Communication Association, Portland, Oregon, USA, 2012: 601-608. [11] Graves A, Mohamed A R, Hinton G.Speech recognition with deep recurrent neural networks[C]// Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2013: 6645-6649. [12] Chiu J P C, Nichols E. Named entity recognition with bidirectional LSTM-CNNs[J]. Transactions of the Association for Computational Linguistics, 2016, 4: 357-370. [13] Lample G, Ballesteros M, Subramanian S, et al.Neural architectures for named entity recognition[C]// Proceedings of the 15th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2016: 260-270. [14] Ma X Z, Hovy E.End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2016: 1064-1074. [15] Limsopatham N, Collier N.Bidirectional LSTM for named entity recognition in Twitter messages[C]// Proceedings of the 2nd Workshop on Noisy User-generated Text, Osaka, Japan, 2016: 145-152. [16] He H, Sun X.A unified model for cross-domain and semi-supervised named entity recognition in Chinese social media[C]// Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2017: 3216-3222. [17] Pham T H, Le-Hong P.End-to-end recurrent neural network models for vietnamese named entity recognition: Word-level vs. character-level[C]// Proceedings of the International Conference of the Pacific Association for Computational Linguistics. Singapore: Springer, 2018, 781: 219-232 . [18] Dong C H, Wu H J, Zhang J J, et al.Multichannel LSTM-CRF for named entity recognition in Chinese social media[C]// Proceedings of the Sixteenth China National Conference on Computational Linguistics. Cham: Springer, 2017, 10565: 197-208. [19] Yi H K, Huang J M, Yang S Q. A Chinese Named Entity Recognition System with Neural Networks[C]// Proceedings of the 4th International Conference on Information Technology and Applications. EDP Sciences, 2017: Article No. 04002. [20] Peters M E, Ammar W, Bhagavatula C, et al.Semi-supervised sequence tagging with bidirectional language models[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2017: 1756-1765. [21] Ni J, Dinu G, Florian R.Weakly supervised cross-lingual named entity recognition via effective annotation and representation projection[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2017: 1470-1480. [22] Rei M, Crichton G K O, Pyysalo S. Attending to characters in neural sequence labeling models[C]// Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, Osaka, Japan, 2016: 309-318. [23] Sun Y Q, Li L, Xie Z W, et al.Co-training an improved recurrent neural network with probability statistic models for named entity recognition[C]// Proceedings of the 22nd International Conference on Database Systems for Advanced Applications. Cham: Springer, 2017: 545-555. [24] Shen Y Y, Yun H, Lipton Z C, et al.Deep active learning for named entity recognition[C]// Proceedings of the 2nd Workshop on Representation Learning for NLP. Stroudsburg: Association for Computational Linguistics, 2017: 252-256. [25] Yang Z, Salakhutdinov R, Cohen W W.Transfer learning for sequence tagging with hierarchical recurrent networks[C]// Proceedings of the 5th International Conference on Learning Representations, Toulon, France, 2017. [26] Mikolov T, Karafiát M, Burget L, et al.Recurrent neural network based language model[C]// Proceedings of the 14th Annual Conference of the International Speech Communication Association, Makuhari, Chiba, Japan, 2010: 1045-1048. [27] Sundermeyer M, Schlüter R, Ney H.LSTM Neural Networks for Language Modeling[C]// Proceedings of the 13th Annual Conference of the International Speech Communication Association, Portland, USA, 2012: 601-608. [28] Lafferty J D, Mccallum A, Pereira F C N. Conditional random fields: Probabilistic models for segmenting and labeling sequence data[C]// Proceedings of the Eighteenth International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers, 2001: 282-289. [29] 王芳. 情报学的范式变迁及元理论研究[J]. 情报学报, 2007, 26(5): 764-773. [30] 王芳, 史海燕, 纪雪梅. 我国情报学研究中理论的应用: 基于《情报学报》的内容分析[J]. 情报学报, 2015, 34(6): 581-591. [31] 孙小礼. 数学·科学·哲学[M]. 北京: 光明日报出版社, 1988: 195-209. [32] Hinton G E.Learning distributed representations of concepts[C]// Proceedings of the 8th Annual Conference of the Cognitive Science Society, Amherst, USA, 1986: 1-12. [33] Mikolov T, Corrado G, Chen K, et al.Efficient estimation of word representations in vector space[C]// Proceedings of the International Conference on Learning Representations, Scottsdale, Arizona, USA, 2013: 1-12. [34] 张剑, 屈丹, 李真. 基于词向量特征的循环神经网络语言模型[J]. 模式识别与人工智能, 2015, 28(4): 299-305. [35] Hinton G E, Srivastava N, Krizhevsky A, et al.Improving neural networks by preventing co-adaptation of feature detectors[J]. Computer Science, 2012, 3(4): 212-223. [36] Hagenauer J, Hoeher P.A Vitrbi algorithm with soft-decision outputs and its applications[C]// Proceedings of the IEEE Global Telecommunications Conference and Exhibition ‘Communications Technology for the 1990s and Beyond’, 1989: 47. [37] 裴文端, 罗伟雄, 李文铎. SOVA译码算法与性能[J]. 无线电工程, 2003, 33(11): 11-13. [38] 姜小波, 陈杰, 仇玉林. 一种简化的SOVA算法[J]. 电子器件, 2004, 27(3): 467-469. [39] 杨建祖, 顾小卓, 杜晓宁, 等. SOVA算法对Viterbi算法的修正[J]. 通信技术, 2007(4): 4-6. [40] 滕少华. 基于CRFs的中文分词和短文本分类技术[D]. 北京: 清华大学, 2009. [41] 高兴龙, 张鹏远, 张震, 等. 基于条件随机场的词级别置信度研究[C]// 中国科学院声学研究所第四届青年学术会议论文集, 2012: 290-293. [42] 闫紫飞, 姬东鸿. 基于CRF和半监督学习的中文时间信息抽取[J]. 计算机工程与设计, 2015, 36(6): 1642-1646. [43] 陈季梦, 刘杰, 黄亚楼, 等. 基于半监督CRF的缩略词扩展解释识别[J]. 计算机工程, 2013, 39(4): 203-209. [44] Murthy V R, Bhattacharyya P.A deep learning solution to named entity recognition[C]// Proceedings of the International Conference on Intelligent Text Processing and Computational Linguistics. Cham: Springer, 2016: 427-438.