A Method of Knowledge Evolution Analysis of ESI Research Fronts Based on Knowledge Element Co-occurrence
Sun Zhen1, Leng Fuhai2
1. Institute of Scientific and Technical Information, Shandong University of Technology, Zibo 255000; 2. Institutes of Science and Development, Chinese Academy of Sciences, Beijing 100190
孙震, 冷伏海. 一种基于知识元共现的ESI研究前沿知识演进分析方法[J]. 情报学报, 2018, 37(11): 1095-1113.
Sun Zhen, Leng Fuhai. A Method of Knowledge Evolution Analysis of ESI Research Fronts Based on Knowledge Element Co-occurrence. 情报学报, 2018, 37(11): 1095-1113.
[1] de Solla Price D J. Networks of scientific papers[J]. Science, 1965, 149(3683): 510-515. [2] de Solla Price D J. Foreword.in Eugene Garfield, Essays of an Information Scientist, Volume 3, 1977-1978[M]. Philadelphia: Institute for Scientific Information, 1979. [3] Pendlebury D.2016研究前沿及分析解读——研究前沿综述: 寻找科学的结构[M]. 北京: 科学出版社, 2017. [4] Small H.Co-citation in the scientific literature: A new measure of the relationship between two documents[J]. Journal of the Association for Information Science and Technology, 1973, 24(4): 265-269. [5] Morris S A, Yen G, Wu Z, et al.Time line visualization of research fronts[J]. Journal of the American Society for Information Science and Technology, 2003, 54(5): 413-422. [6] Chen C.CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for information Science and Technology, 2006, 57(3): 359-377. [7] Kostoff R N.Database tomography for technical intelligence[J]. Competitive Intelligence Review, 1993, 4(1): 38-43. [8] 安新颖, 冷伏海. 基于非相关文献的知识发现原理研究[J]. 情报学报, 2006, 25(1): 87-93. [9] Allan J.Topic detection and tracking: Event-based information organization[M]. Netherlands: Kluwer Academic Publishers, 2002. [10] 王莉亚. 基于离群数据的主题演化研究[D]. 北京: 中国科学院研究生院, 2012. [11] 白如江. 基于语义计算的科学研究前沿识别研究[D]. 北京: 中国科学院大学, 2015. [12] Wang X, Wang Z, Xu S.Tracing scientist’s research trends realtimely[J]. Scientometrics, 2013, 95(2): 717-729. [13] 孙震. 基于科学论文多源数据的研究前沿集成识别模型研究[J]. 情报杂志, 2016, 35(8): 95-100. [14] 许晓阳, 郑彦宁, 刘志辉. 论文和专利相结合的研究前沿识别方法研究[J]. 图书情报工作, 2016, 60(24): 97-106. [15] Garfield E.Research fronts[J]. Current Contents, 1994, 41(10): 3-7. [16] Physics World. China forges ahead in global research[EB/OL]. [2016-12-01]. http://physicsworld.com/cws/article/news/2016/nov/21/ china-forges-ahead-in-global-research. [17] 李源潮. 深化科协系统改革为建设世界科技强国作出新贡献——在中国科协九届二次全委会上的讲话[J]. 科协论坛, 2017(2): 4-7. [18] 梁花侠, 白君礼. 基于ESI 数据库中国农业科学领域文献计量分析研究[J]. 科技管理研究, 2013, 33(5): 71-74. [19] 刘月雷, 聂峰英. 基于ESI数据库的地球科学领域文献计量分析研究[J]. 现代情报, 2015, 35(6): 81-85. [20] 周群, 周秋菊, 冷伏海. 生物科学研究前沿演进时序分析[J]. 中国科学院院刊, 2017, 32(4): 405-412. [21] 孙震, 冷伏海. 基于知识元的新型科学计量范式探析[J]. 情报学报, 2017, 36(6): 555-564. [22] 孙震, 冷伏海, 张晋辉. 基于知识元的科学计量方法及其实证研究[J]. 图书情报工作, 2017, 61(23): 89-99. [23] Song M, Heo G E, Kim S Y.Analyzing topic evolution in bioinformatics: investigation of dynamics of the field with conference data in DBLP[J]. Scientometrics, 2014, 101(1): 397-428. [24] Jensen S, Liu X, Yu Y, et al.Generation of topic evolution trees from heterogeneous bibliographic networks[J]. Journal of Informetrics, 2016, 10(2): 606-621. [25] Tong S, Ahlgren P.Evolution of three Nobel Prize themes and a Nobel snub theme in chemistry: a bibliometric study with focus on international collaboration[J]. Scientometrics, 2017, 112(1): 75-90. [26] 隗玲, 许海云, 胡正银, 等. 学科主题演化路径的多模式识别与预测——一个情报学学科主题演化案例[J]. 图书情报工作, 2016, 60(13): 71-81. [27] 刘自强, 王效岳, 白如江. 多维主题演化分析模型构建与实证研究[J]. 情报理论与实践, 2017, 40(3): 92-98. [28] 陶易, 马海群. 开放数据研究主题的知识结构演化分析[J]. 情报资料工作, 2017(4) : 30-35. [29] Callon M, Courtial J P, Turner W A, et al.From translations to problematic networks: An introduction to co-word analysis[J]. Information (International Social Science Council), 1983, 22(2): 191-235. [30] Yang Y, Wu M, Cui L.Integration of three visualization methods based on co-word analysis[J]. Scientometrics, 2011, 90(2): 659-673. [31] Burmaoglu S, Saritas O, Kıdak L B, et al.Evolution of connected health: a network perspective[J]. Scientometrics, 2017, 112(3): 1419-1438. [32] Law J, Bauin S, Courtial J, et al.Policy and the mapping of scientific change: A co-word analysis of research into environmental acidification[J]. Scientometrics, 1988, 14(3-4): 251-264. [33] Musgrove P, Binns R, Page-Kennedy T, et al.A method for identifying clusters in sets of interlinking Web spaces[J]. Scientometrics, 2003, 58(3): 657-672. [34] Kostoff R N, Stump J A, Johnson D, et al.The structure and infrastructure of the global nanotechnology literature[J]. Journal of Nanoparticle Research, 2006, 8(3): 301-321. [35] 邵作运, 李秀霞. 惩罚性矩阵分解及其在共词分析中的应用[J]. 图书情报工作, 2015, 59(13): 126-133, 148. [36] 周丽英, 冷伏海, 左文革. 引文耦合增强的共词分析方法改进研究——以 ESI 农业科学研究主题划分为例[J]. 情报理论与实践, 2015, 38(11): 120-125. [37] 赵宾, 董颖, 杨晓杰. 国内信息生态研究的知识图谱与热点主题——基于文献计量学共词分析的视角[J]. 情报科学, 2017, 35(9): 61-66, 164. [38] Ding Y, Song M, Han J, et al.Entitymetrics: Measuring the impact of entities[J]. PLoS ONE, 2013, 8(8): e71416. [39] Thomson Scientific. Research Front Methodology[EB/OL]. [2015-11-30]. http://www.esi-topics.com/RFmethodology.html. [40] Jessop D M, Adams S E, Willighagen E L, et al.OSCAR4: a flexible architecture for chemical text-mining[J]. Journal of Cheminformatics, 2011, 3(1): 41. [41] Suppe F.The structure of a scientific paper[J]. Philosophy of Science, 1998, 65(3): 381-405. [42] Teufel S.Argumentative zoning: Information extraction from scientific text[D]. Edinburgh: University of Edinburgh, 2000. [43] 黄永, 陆伟, 程齐凯. 学术文本的结构功能识别——基于章节内容的识别[J]. 情报学报, 2016, 35(3): 293-300. [44] 黄永, 陆伟, 程齐凯, 等. 学术文本的结构功能识别——在学术搜索中的应用[J]. 情报学报, 2016, 35(4): 425-431. [45] 方龙, 李信, 黄永, 等. 学术文本的结构功能识别——在关键词自动抽取中的应用[J]. 情报学报, 2017, 36(6): 599-605. [46] Laban W A, Etgar L.Depleted hole conductor-free lead halide iodide heterojunction solar cells[J]. Energy & Environmental Science, 2013, 6(11): 3249-3253. [47] Blondel V D, Guillaume J L, Lambiotte R, et al.Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008(10): P10008. [48] Yang W S, Park B W, Jung E H, et al.Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells[J]. Science, 2017, 356(6345): 1376-1379. [49] Hao F, Stoumpos C C, Cao D H, et al.Lead-free solid-state organic-inorganic halide perovskite solar cells[J]. Nature Photonics, 2014, 8(6): 489-494. [50] Kim H S, Lee C R, Im J H, et al.Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific Reports, 2012, 2(8): 591. [51] Niu G, Li W, Meng F, et al.Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells[J]. Journal of Materials Chemistry A, 2014, 2(3): 705-710. [52] 杨旭东, 陈汉, 毕恩兵,等. 高效率钙钛矿太阳电池发展中的关键问题[J]. 物理学报, 2015, 64(3): 68-77. [53] Li Y, Cooper J K, Buonsanti R, et al.Fabrication of planar heterojunction perovskite solar cells by controlled low-pressure vapor annealing[J]. The Journal of Physical Chemistry Letters, 2015, 6(3): 493-499. [54] Lang F, Gluba M A, Albrecht S, et al.Perovskite solar cells with large-area CVD-graphene for tandem solar cells[J]. The Journal of Physical Chemistry Letters, 2015, 6(14): 2745-2750. [55] Li X, Rui M, Song J, et al.Carbon and graphene quantum dots for optoelectronic and energy devices: a review[J]. Advanced Functional Materials, 2015, 25(31): 4929-4947. [56] Carli S, Baena J P C, Marianetti G, et al. A new 1,3,4-oxadiazole-based hole-transport material for efficient CH3NH3PbBr3 perovskite solar cells[J]. ChemSusChem, 2016, 9(7): 657-661. [57] Beal R E, Slotcavage D J, Leijtens T, et al.Cesium lead halide perovskites with improved stability for tandem solar cells[J]. The Journal of Physical Chemistry Letters, 2016, 7(5): 746-751. [58] Xu Y, Wang Y, Yu J, et al.Performance improvement of perovskite solar cells based on pcbm-modified ZnO-nanorod arrays[J]. IEEE Journal of Photovoltaics, 2016, 6(6): 1530-1536. [59] Yu X, Chen S, Yan K, et al.Enhanced photovoltaic performance of perovskite solar cells with mesoporous SiO2 scaffolds[J]. Journal of Power Sources, 2016, 325: 534-540. [60] Kang J, Wang L W.High Defect Tolerance in Lead Halide Perovskite CsPbBr3[J]. The Journal of Physical Chemistry Letters, 2017, 8(2): 489-493. [61] Qiu X, Cao B, Yuan S, et al.From unstable CsSnI3 to air-stable Cs2SnI6: A lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient[J]. Solar Energy Materials and Solar Cells, 2017, 159: 227-234. [62] Nia N Y, Matteocci F, Cina L, et al.High-efficiency perovskite solar cell based on poly (3-hexylthiophene): Influence of molecular weight and mesoscopic scaffold layer[J]. ChemSusChem, 2017, 10(19): 3854. [63] Clarivate Analytics. 科睿唯安与中国科学院联合发布《2017研究前沿》——连续4年揭示全球热点和新兴研究前沿[EB/OL]. [2017-11-02]. http://clarivate.com.cn/press/press20171102/. [64] 中国科学院物理研究所. 第一届新型太阳能电池暨钙钛矿太阳能电池学术研讨会[EB/OL]. [2017-11-05]. http://solar.iphy. ac.cn/2014/solar_conf.html. [65] 马费成. 情报学的进展与深化[J]. 情报学报, 1996, 15(5): 337-343. [66] Mckenzie L.Want to analyze millions of scientific papers all at once? Here’s the best way to do it[EB/OL]. [2017-07-22].https://www.sciencemag.org/news/2017/07/want-analyze-millions-scientific-papers-all-once-here-s-best-way-do-it.