陈洪侃, 刘金昌, 步一. 基于ELO模型的技术主题热度评估框架研究[J]. 情报学报, 2025, 44(6): 688-701.
Chen Hongkan, Liu Jinchang, Bu Yi. Toward a Technical Topic Popularity Evaluation Framework Based on the ELO Model. 情报学报, 2025, 44(6): 688-701.
1 熊坚, 林国栋, 蒋晶, 等. 红外技术在针灸领域应用现状和热点可视化分析[J]. 世界科学技术-中医药现代化, 2023, 25(7): 2479-2492. 2 李薇, 张龙浩, 龚小清, 等. 基于文献计量的肺癌早期筛查技术前沿与热点分析[J]. 中国胸心血管外科临床杂志, 2022, 29(11): 1478-1484. 3 徐晓日, 刘丹琳. 我国突发公共事件舆情治理研究的热点主题与演进趋势[J]. 行政与法, 2023(6): 15-27. 4 孙艳姣. 智能制造专利热点技术竞争态势研究[J]. 制造技术与机床, 2023(10): 67-71. 5 张新猛, 刘江鹏, 范亚茹, 等. 产业链视角下专利新兴技术主题识别[J]. 情报杂志, 2023, 42(8): 96-101, 55. 6 刘盼盼, 王丽. 关系网络视角下新兴技术识别研究进展[J]. 图书情报工作, 2022, 66(11): 139-150. 7 李昌, 杨中楷, 董坤. 基于多维属性动态变化特征的新兴技术识别研究[J]. 情报学报, 2022, 41(5): 463-474. 8 Jones B F. The burden of knowledge and the “death of the renaissance man”: is innovation getting harder?[J]. The Review of Economic Studies, 2009, 76(1): 283-317. 9 Tseng Y H, Lin Y I, Lee Y Y, et al. A comparison of methods for detecting hot topics[J]. Scientometrics, 2009, 81(1): 73-90. 10 郝雯柯, 杨建林. 基于语义表示和动态主题模型的社科领域新兴主题预测研究[J]. 情报理论与实践, 2023, 46(2): 184-193. 11 胡泽文, 李甜甜. 基于LDA主题模型和扎根理论的我国金融科技领域热点主题识别与进展分析[J]. 情报科学, 2023, 41(10): 99-111. 12 李新根, 魏淑艳, 刘冬梅. 国内数字化治理研究的热点主题与演进趋势——基于CiteSpace的知识图谱分析[J]. 东南学术, 2022(2): 61-71, 247. 13 丁敬达, 钟建兰. 新兴主题属性量化研究综述[J]. 图书情报工作, 2023, 67(9): 12-22. 14 李红宇, 徐亚男, 张思洁. 我国职业教育研究热点识别与评析[J]. 河北师范大学学报(教育科学版), 2023, 25(6): 29-39. 15 牛君, 程智超. 我国新能源产业发展研究现状与展望——基于文献计量学的可视化分析[J]. 生态经济, 2024, 40(1): 211-220. 16 贾晓峰, 高芳, 耿喆. 基于文献计量的国际人体微生态研究主题分析[J]. 中国微生态学杂志, 2018, 30(12): 1402-1407. 17 刘玉屏, 祝鹏, 胡雪珺. 国际中文教师研究热点主题、演进特征与未来展望[J]. 民族教育研究, 2024, 35(1): 157-166. 18 刘成山, 杜怡然, 汪圳. 基于细粒度知识图谱的科技文献主题发现与热点分析[J]. 情报理论与实践, 2024, 47(5): 131-138. 19 胡泽文, 韩雅蓉, 王梦雅. 基于LDA-Word2Vec的图书情报领域机器学习研究主题演化与热点主题识别[J]. 现代情报, 2024, 44(4): 154-167. 20 陈琦, 张君冬, 郑婉婷, 等. 基于LDA模型的中医药人工智能领域主题演化分析[J]. 世界科学技术-中医药现代化, 2022, 24(9): 3315-3324. 21 Abramo G, D’Angelo C A, Reale E. Peer review vs bibliometrics: which method better predicts the scholarly impact of publications[J]. Scientometrics, 2019, 121(1): 537-554. 22 韩盟, 陈悦, 王玉奇, 等. 弱信号识别研究综述: 寻找微弱的未来信号[J]. 情报学报, 2023, 42(8): 996-1008. 23 Elo A E. The rating of chessplayers, past and present[M]. New York: Arco Publishing, 1978. 24 聂秀萍. 基于时间序列的学科热点主题预测[D]. 北京: 中国农业科学院, 2019. 25 邱均平, 温芳芳. 近五年来图书情报学研究热点与前沿的可视化分析——基于13种高影响力外文源刊的计量研究[J]. 中国图书馆学报, 2011, 37(2): 51-60. 26 王山, 谭宗颖. 技术生命周期判断方法研究综述[J]. 现代情报, 2020, 40(11): 144-153. 27 刘俊婉, 庞博, 徐硕. 基于弱信号的颠覆性技术早期识别研究[J]. 情报学报, 2023, 42(12): 1395-1411. 28 裘惠麟, 邵波. 多源数据环境下科研热点识别方法研究[J]. 图书情报工作, 2020, 64(5): 78-88. 29 荣国阳, 李长玲, 范晴晴, 等. 主题热度加速度指数——学科研究热点识别新方法[J]. 图书情报工作, 2021, 65(20): 59-67. 30 方志超. 基于多元数据对象的科学计量学热点主题识别研究[D]. 大连: 大连理工大学, 2017. 31 郑德俊, 程为. 基于三维主题特征测度的新兴主题识别研究[J]. 情报学报, 2024, 43(2): 167-180. 32 National Research Council. Intelligence analysis for tomorrow: advances from the behavioral and social sciences[M]. Washington, D.C.: The National Academies Press, 2011. 33 Priem J, Piwowar H, Orr R. OpenAlex: a fully-open index of scholarly works, authors, venues, institutions, and concepts[C]// Proceedings of the 26th International Conference on Science and Technology Indicators. Piscataway: IEEE, 2022: 1-5. 34 Grootendorst M. BERTopic: neural topic modeling with a class-based TF-IDF procedure[OL]. (2022-03-11). https://arxiv.org/pdf/2203.05794. 35 El Akrouchi M, Benbrahim H, Kassou I. End-to-end LDA-based automatic weak signal detection in web news[J]. Knowledge-Based Systems, 2021, 212: 106650. 36 刘俊婉, 庞博, 徐硕. 基于弱信号的颠覆性技术早期识别研究[J]. 情报学报, 2023, 42(12): 1395-1411. 37 Yoon J. Detecting weak signals for long-term business opportunities using text mining of Web news[J]. Expert Systems with Applications, 2012, 39(16): 12543-12550. 38 韩盟, 陈悦, 王玉奇, 等. 基于异类数据和语义建构的新兴技术弱信号识别研究[J]. 情报学报, 2024, 43(3): 302-312. 39 Papon E A, Haque A. Fracture toughness of additively manufactured carbon fiber reinforced composites[J]. Additive Manufacturing, 2019, 26: 41-52. 40 Naghipour P, Bartsch M, Chernova L, et al. Effect of fiber angle orientation and stacking sequence on mixed mode fracture toughness of carbon fiber reinforced plastics: numerical and experimental investigations[J]. Materials Science and Engineering: A, 2010, 527(3): 509-517. 41 Mishra K, Bastola K P, Singh R P, et al. Effect of graphene oxide on the interlaminar fracture toughness of carbon fiber/epoxy composites[J]. Polymer Engineering & Science, 2019, 59(6): 1199-1208. 42 Shrivastava R, Singh K K. Interlaminar fracture toughness characterization of laminated composites: a review[J]. Polymer Reviews, 2020, 60(3): 542-593. 43 Li N, Huang Y, Du F, et al. Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites[J]. Nano Letters, 2006, 6(6): 1141-1145. 44 Nguyen Dinh D, Nguyen P. The dynamic response and vibration of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) truncated conical shells resting on elastic foundations[J]. Materials, 2017, 10(10): 1194. 45 Ou Y F, González C, Vilatela J J. Understanding interlaminar toughening of unidirectional CFRP laminates with carbon nanotube veils[J]. Composites Part B: Engineering, 2020, 201: 108372. 46 Su Y N, Zhou F, Wei X H, et al. Enhanced mechanical and electrical properties of carbon fiber/poly (ether ether ketone) laminates via inserting carbon nanotubes interleaves[J]. Journal of Applied Polymer Science, 2020, 137(19): 48658. 47 Zheng N, Huang Y D, Liu H Y, et al. Improvement of interlaminar fracture toughness in carbon fiber/epoxy composites with carbon nanotubes/polysulfone interleaves[J]. Composites Science and Technology, 2017, 140: 8-15. 48 Reia da Costa E F, Skordos A A, Partridge I K, et al. RTM processing and electrical performance of carbon nanotube modified epoxy/fibre composites[J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(4): 593-602. 49 Li Q X, Church J S, Naebe M, et al. A systematic investigation into a novel method for preparing carbon fibre-carbon nanotube hybrid structures[J]. Composites Part A: Applied Science and Manufacturing, 2016, 90: 174-185. 50 Zainol Abidin M S, Herceg T, Greenhalgh E S, et al. Enhanced fracture toughness of hierarchical carbon nanotube reinforced carbon fibre epoxy composites with engineered matrix microstructure[J]. Composites Science and Technology, 2019, 170: 85-92. 51 Du X S, Liu H Y, Xu F, et al. Flame synthesis of carbon nanotubes onto carbon fiber woven fabric and improvement of interlaminar toughness of composite laminates[J]. Composites Science and Technology, 2014, 101: 159-166. 52 Akasheh F, Aglan H. Fracture toughness enhancement of carbon fiber-reinforced polymer composites utilizing additive manufacturing fabrication[J]. Journal of Elastomers & Plastics, 2019, 51(7/8): 698-711. 53 Hsiao K T, Gangireddy S. Investigation on the spring-in phenomenon of carbon nanofiber-glass fiber/polyester composites manufactured with vacuum assisted resin transfer molding[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(5): 834-842. 54 Uddin N, Shohel M, Vaidya U K, et al. Bond strength of carbon fiber sheet on concrete substrate processed by vacuum assisted resin transfer molding[J]. Advanced Composite Materials, 2008, 17(3): 277-299. 55 Thouin M, Ghiasi H, Lessard L. Design of a carbon fiber bicycle stem using a novel internal bladder resin transfer molding technique[J]. Advanced Composites Letters, 2010, 19(1): 51-60. 56 Aurrekoetxea J, Agirregomezkorta A, Aretxaga G, et al. Impact behavior of carbon fiber/epoxy composite manufactured by vacuum-assisted compression resin transfer molding[J]. Journal of Composite Materials, 2012, 46(1): 43-49. 57 Lopez-Arraiza A, Amenabar I, Agirregomezkorta A, et al. Experimental analysis of drilling damage in carbon-fiber reinforced thermoplastic laminates manufactured by resin transfer molding[J]. Journal of Composite Materials, 2012, 46(6): 717-725. 58 Zeiler R, Kuttner C, Khalid U, et al. The role of multi-walled carbon nanotubes in epoxy nanocomposites and resin transfer molded glass fiber hybrid composites: dispersion, local distribution, thermal, and fracture/mechanical properties[J]. Polymer Composites, 2017, 38(9): 1849-1863. 59 Ball C A, Greydanus S, Swentek L, et al. Development of an epoxy carbon fiber reinforced roof frame using the high pressure resin transfer molding (HP-RTM) process[C]// Proceedings of the WCX SAE World Congress Experience. Warrendale: SAE International, 2020: 6415-6422. 60 Choi C W, Jin J W, Lee H, et al. Optimal polymerization conditions in thermoplastic-resin transfer molding process for mechanical properties of carbon fiber-reinforced PA6 composites using the response surface method[J]. Fibers and Polymers, 2019, 20(5): 1021-1028. 61 Lee J, Lim J W, Kim M. Effect of thermoplastic resin transfer molding process and flame surface treatment on mechanical properties of carbon fiber reinforced polyamide 6 composite[J]. Polymer Composites, 2020, 41(4): 1190-1202. 62 Lee J H, Son S M, Yoo J J, et al. Thermoplastic resin transfer molding of carbon fiber reinforced polyamide 6 composite with the improved processability using zeolite particle[J]. Korea-Australia Rheology Journal, 2023, 35(1): 39-45. 63 Xu X X, Wei K, Mei M, et al. An ultrasound-assisted resin transfer molding to improve the impregnation and dual-scale flow for carbon fiber reinforced resin composites[J]. Composites Science and Technology, 2024, 255: 110710. 64 Croccolo D, De Agostinis M, Fini S, et al. Optimization of bolted joints: a literature review[J]. Metals, 2023, 13(10): 1708. 65 Bickford J H, Nassar S. Handbook of bolts and bolted joints[M]. New York: Marcel Dekker, 1998. 66 Heimbs S, Heller S, Middendorf P, et al. Low velocity impact on CFRP plates with compressive preload: test and modelling[J]. International Journal of Impact Engineering, 2009, 36(10/11): 1182-1193. 67 Tian Z G, Zhi Q, Feng X Y, et al. Effect of preload on the weld quality of ultrasonic welded carbon-fiber-reinforced nylon 6 composite[J]. Polymers, 2022, 14(13): 2650. 68 Tong X, Meng L, Wan Y, et al. Preload relaxation behavior and its influence on the mechanical performance of bolted carbon fiber-reinforced thermoplastic sheet molding compound joints[J]. Polymer Composites, 2024, 45(10): 8810-8824. 69 Helal K, Yehia S, Hawileh R, et al. Performance of preloaded CFRP-strengthened fiber reinforced concrete beams[J]. Composite Structures, 2020, 244: 112262. 70 Zhang H B, Wang M W, Deng W, et al. Semi-physical simulation optimization method for bolt tightening process based on reinforcement learning[J]. Machines, 2022, 10(8): 637. 71 Foissac C, Daidié A, Segonds S, et al. Application of neural networks for smart tightening of aeronautical bolted assemblies[C]// Proceedings of the International Joint Conference on Mechanics, Design Engineering & Advanced Manufacturing. Cham: Spring, 2023: 421-429. 72 Trotta A, Ziosi M, Lomonaco V. The future of ethics in AI: challenges and opportunities[J]. AI & Society, 2023, 38(2): 439-441. 73 步一, 许家伟, 黄文彬. 基于引文的科学文献定量评价: 引文影响力指标评述[J]. 图书情报知识, 2021, 38(6): 47-59, 46. 74 杜元清, 王延飞. 论情报事实[J]. 情报理论与实践, 2024, 47(10): 1-9.