Structural Characteristics of the Co-contributorship Network and Its Application in Collaborative Group Identification
Lu Chao1, Li Mengting1, Chen Xiujuan2, Dong Ke3,4, Wei Ruibin5
1.Business School, Hohai University, Nanjing 211100 2.School of Journalism and Communication, Nanjing Normal University, Nanjing 210097 3.Research Institute for Data Management & Innovation, Nanjing University, Suzhou 215163 4.Laboratory of Data Intelligence and Interdisciplinary lnnovation, Nanjing University, Nanjing 210023 5.School of Management Science and Engineering, Anhui University of Finance and Economics, Bengbu 233030
摘要有组织科研团队建设有赖于对科研合作现象和规律的科学认识。常用于科研合作模式研究的合著者网络默认同一成果的合作者间贡献均等,但这通常与科研合作实践相左。作者贡献声明数据的出现为揭示更细粒度的合作实践提供了重要素材。为此,本研究提出一种利用贡献声明数据构建的新型合作网络——合贡献者网络,为深入研究科研合作问题提供新工具。本研究以PLoS(Public Library of Science)上的药学论文数据为例,以合著者网络为基准,从合贡献者网络的网络结构特征入手,认识此新型合作网络的物理性质;选取当前重要研究方向之一的“合作群体识别”为切入点,进一步认识合贡献者网络的应用价值。研究结果表明:①在网络结构形态上,合贡献者网络比合著者网络更稀疏;②在合作群体识别上,两种网络的群体识别结果部分一致,重合度约为57%;约32%的合作群体在合贡献者网络上发生了重组;③合贡献者网络中的合作群体发文主题比合著者网络更为聚焦,但检验结果并不显著。总体来看,在本研究的数据集上,合贡献者网络较之合著者网络显示出更良好的社区结构;合贡献者网络有助于识别出更细粒度的合作群体,且在所识别的合作群体上发文主题的一致性更高。
卢超, 李梦婷, 陈秀娟, 董克, 魏瑞斌. 合贡献者网络的结构特征及其合作群体识别应用研究[J]. 情报学报, 2024, 43(7): 773-788.
Lu Chao, Li Mengting, Chen Xiujuan, Dong Ke, Wei Ruibin. Structural Characteristics of the Co-contributorship Network and Its Application in Collaborative Group Identification. 情报学报, 2024, 43(7): 773-788.
1 Larivière V, Gingras Y, Sugimoto C R, et al. Team size matters: collaboration and scientific impact since 1900[J]. Journal of the Association for Information Science and Technology, 2015, 66(7): 1323-1332. 2 Lu C, Zhang C W, Xiao C R, et al. Contributorship in scientific collaborations: The perspective of contribution-based byline orders[J]. Information Processing & Management, 2022, 59(3): 102944. 3 Birnholtz J P. What does it mean to be an author? The intersection of credit, contribution, and collaboration in science[J]. Journal of the American Society for Information Science and Technology, 2006, 57(13): 1758-1770. 4 Leahey E, Reikowsky R C. Research specialization and collaboration patterns in sociology[J]. Social Studies of Science, 2008, 38(3): 425-440. 5 Amjad T, Ding Y, Xu J, et al. Standing on the shoulders of giants[J]. Journal of Informetrics, 2017, 11(1): 307-323. 6 Allen L, Scott J, Brand A, et al. Publishing: credit where credit is due[J]. Nature, 2014, 508(7496): 312-313. 7 Frische S. It is time for full disclosure of author contributions[J]. Nature, 2012, 489(7417): 475. 8 Lu C, Zhang Y Y, Ahn Y Y, et al. Co-contributorship network and division of labor in individual scientific collaborations[J]. Journal of the Association for Information Science and Technology, 2020, 71(10): 1162-1178. 9 Larivière V, Pontille D, Sugimoto C R. Investigating the division of scientific labor using the Contributor Roles Taxonomy (CRediT)[J]. Quantitative Science Studies, 2021, 2(1): 111-128. 10 Yang S L, Xiao A X, Nie Y, et al. Measuring coauthors’ credit in medicine field-based on author contribution statement and citation context analysis[J]. Information Processing & Management, 2022, 59(3): 102924. 11 Corrêa E A, Silva F N, da F Costa L, et al. Patterns of authors contribution in scientific manuscripts[J]. Journal of Informetrics, 2017, 11(2): 498-510. 12 Newman M E J. Coauthorship networks and patterns of scientific collaboration[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(Suppl 1): 5200-5205. 13 Barabási A L, Jeong H, Néda Z, et al. Evolution of the social network of scientific collaborations[J]. Physica A: Statistical Mechanics and Its Applications, 2002, 311(3/4): 590-614. 14 Zhang C W, Bu Y, Ding Y, et al. Understanding scientific collaboration: homophily, transitivity, and preferential attachment[J]. Journal of the Association for Information Science and Technology, 2018, 69(1): 72-86. 15 Savi? M, Ivanovi? M, Jain L C. Analysis of enriched co-authorship networks: methodology and a case study[M]// Complex Networks in Software, Knowledge, and Social Systems. Cham: Springer, 2019: 277-317. 16 He C C, Wu J, Zhang Q P. Characterizing research leadership on geographically weighted collaboration network[J]. Scientometrics, 2021, 126(5): 4005-4037. 17 Zhai L, Yan X B. A directed collaboration network for exploring the order of scientific collaboration[J]. Journal of Informetrics, 2022, 16(4): 101345. 18 Yu S, Alqahtani F, Tolba A, et al. Collaborative team recognition: a core plus extension structure[J]. Journal of Informetrics, 2022, 16(4): 101346. 19 Li E Y, Liao C H, Yen H R. Co-authorship networks and research impact: a social capital perspective[J]. Research Policy, 2013, 42(9): 1515-1530. 20 Amjad T, Daud A, Aljohani N R. Ranking authors in academic social networks: a survey[J]. Library Hi Tech, 2018, 36(1): 97-128. 21 Ma G S, Qian Y H, Zhang Y Y, et al. The recognition of kernel research team[J]. Journal of Informetrics, 2022, 16(4): 101339. 22 Chuan P M, Son L H, Ali M, et al. Link prediction in co-authorship networks based on hybrid content similarity metric[J]. Applied Intelligence, 2018, 48(8): 2470-2486. 23 Orzechowski K P, Mrowinski M J, Fronczak A, et al. Asymmetry of social interactions and its role in link predictability: the case of coauthorship networks[J]. Journal of Informetrics, 2023, 17(2): 101405. 24 Katz J S, Martin B R. What is research collaboration?[J]. Research Policy, 1997, 26(1): 1-18. 25 刘晓婷, 黄颖, 李瑞婻, 等. 内聚-耦合视角下科研团队合作模式识别与对比研究[J]. 情报科学, 2022, 40(12): 170-180. 26 Zou B T, Wang Y F, Kwoh C K, et al. Directed collaboration patterns in funded teams: a perspective of knowledge flow[J]. Information Processing & Management, 2023, 60(2): 103237. 27 吕千千, 谭宗颖. 虚拟科研团队识别方法研究——以重症医学领域为例[J]. 图书情报工作, 2022, 66(15): 97-106. 28 李纲, 柳明飞, 吴青, 等. 基于蝴蝶结模型的科研团队角色识别及其特征研究[J]. 图书情报工作, 2017, 61(5): 87-94. 29 丁敬达, 王新明. 基于作者贡献声明的合著者贡献率测度方法[J]. 图书情报工作, 2019, 63(16): 95-102. 30 张梦莹, 章成志, 王杰. 不同学科的作者贡献分布差异研究——以图情和医学领域的四种期刊为例[J]. 图书馆论坛, 2018, 38(12): 112-119. 31 Sinatra R, Deville P, Szell M, et al. A century of physics[J]. Nature Physics, 2015, 11(10): 791-796. 32 卢超, 章成志, 王玉琢, 等. 语义特征分析的深化——学术文献的全文计量分析研究综述[J]. 中国图书馆学报, 2021, 47(2): 110-131. 33 卢超, 董克. 文献耦合网络的引文内容加权研究——基于提及次数的方法[J]. 情报杂志, 2022, 41(11): 171-178. 34 Lu C, Bu Y, Dong X L, et al. Analyzing linguistic complexity and scientific impact[J]. Journal of Informetrics, 2019, 13(3): 817-829. 35 Lancichinetti A, Fortunato S. Community detection algorithms: a comparative analysis[J]. Physical Review E, 2009, 80(5): 056117. 36 Blondel V D, Guillaume J L, Lambiotte R, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008, 2008(10): P10008. 37 Syakur M A, Khotimah B K, Rochman E S, et al. Integration k-means clustering method and elbow method for identification of the best customer profile cluster[J]. IOP Conference Series: Materials Science and Engineering, 2018, 336: 012017. 38 Newman M E J. Fast algorithm for detecting community structure in networks[J]. Physical Review E, 2004, 69(6): 066133. 39 Wang Q. A bibliometric model for identifying emerging research topics[J]. Journal of the Association for Information Science and Technology, 2018, 69(2): 290-304. 40 Grootendorst M. MaartenGr/KeyBERT: BibTeX[CP/OL]. (2021-01-25). https://doi.org/10.5281/zenodo.4461265. 41 Guo Z H, You Z H, Huang D S, et al. MeSHHeading2vec: a new method for representing MeSH headings as vectors based on graph embedding algorithm[J]. Briefings in Bioinformatics, 2021, 22(2): 2085-2095. 42 Grover A, Leskovec J. node2vec: scalable feature learning for networks[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2016: 855-864. 43 Newman M E J. The structure of scientific collaboration networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(2): 404-409. 44 Devine E B, Beney J, Bero L A. Equity, accountability, transparency: implementation of the contributorship concept in a multi-site study[J]. American Journal of Pharmaceutical Education, 2005, 69(4): 61. 45 Jia T, Wang D S, Szymanski B K. Quantifying patterns of research-interest evolution[J]. Nature Human Behaviour, 2017, 1: Article No.0078. 46 Li B H, Zhou H, He J X, et al. On the sentence embeddings from pre-trained language models[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2020: 9119-9130. 47 Robinson-Garcia N, Costas R, Sugimoto C R, et al. Task specialization across research careers[J]. eLife, 2020, 9: e60586. 48 Xu F L, Wu L F, Evans J. Flat teams drive scientific innovation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(23): e2200927119.