1 Bondielli A, Marcelloni F. A survey on fake news and rumour detection techniques[J]. Information Sciences, 2019, 497: 38-55. 2 DiFonzo N, Bordia P. Rumor, gossip and urban legends[J]. Diogenes, 2007, 54(1): 19-35. 3 Zubiaga A, Liakata M, Procter R, et al. Towards detecting rumours in social media[C]// Proceedings of the 29th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2015: 35-41. 4 贺刚, 吕学强, 李卓, 等. 微博谣言识别研究[J]. 图书情报工作, 2013, 57(23): 114-120. 5 Castillo C, Mendoza M, Poblete B. Information credibility on Twitter[C]// Proceedings of the 20th International Conference on World Wide Web. New York: ACM Press, 2011: 675-684. 6 Kwon S, Cha M, Jung K, et al. Prominent features of rumor propagation in online social media[C]// Proceedings of the 2013 IEEE 13th International Conference on Data Mining. Piscataway: IEEE, 2013: 1103-1108. 7 曾子明, 王婧. 基于LDA和随机森林的微博谣言识别研究——以2016年雾霾谣言为例[J]. 情报学报, 2019, 38(1): 89-96. 8 Yu F, Liu Q A, Wu S, et al. A convolutional approach for misinformation identification[C]// Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2017: 3901-3907. 9 Wang W Y. “Liar, liar pants on fire”: a new benchmark dataset for fake news detection[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2017: 422-426. 10 Afroz S, Brennan M, Greenstadt R. Detecting hoaxes, frauds, and deception in writing style online[C]// Proceedings of the 2012 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2012: 461-475. 11 Liu X M, Nourbakhsh A, Li Q Z, et al. Real-time rumor debunking on Twitter[C]// Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. New York: ACM Press, 2015: 1867-1870. 12 Ma J, Gao W, Wei Z Y, et al. Detect rumors using time series of social context information on microblogging websites[C]// Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. New York: ACM Press, 2015: 1751-1754. 13 Bruna J, Zaremba W, Szlam A, et al. Spectral networks and locally connected networks on graphs[C]// Proceedings of the 2nd International Conference on Learning Representations. ICLR, 2014: 1-14. 14 Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[C]// Proceedings of the 5th International Conference on Learning Representations. ICLR, 2017: 1-14. 15 Hamilton W L, Ying R, Leskovec J. Inductive representation learning on large graphs[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2017: 1025-1035. 16 Veli?kovi? P, Cucurull G, Casanova A, et al. Graph attention networks[C]// Proceedings of the 6th International Conference on Learning Representations. ICLR, 2018: 1-12. 17 Yan S J, Xiong Y J, Lin D H. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018: 7444-7452. 18 Bian T A, Xiao X, Xu T Y, et al. Rumor detection on social media with bi-directional graph convolutional networks[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 549-556. 19 Bai N, Meng F R, Rui X B, et al. Rumour detection based on graph convolutional neural net[J]. IEEE Access, 2021, 9: 21686-21693. 20 王昕岩, 宋玉蓉, 宋波. 一种加权图卷积神经网络的新浪微博谣言检测方法[J]. 小型微型计算机系统, 2021, 42(8): 1780-1786. 21 Ribeiro M T, Singh S, Guestrin C. “Why should I trust you?”: explaining the predictions of any classifier[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2016: 1135-1144. 22 Zhou B L, Khosla A, Lapedriza A, et al. Learning deep features for discriminative localization[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2921-2929. 23 Selvaraju R R, Cogswell M, Das A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]// Proceedings of the 16th IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 618-626. 24 Chattopadhyay A, Sarkar A, Howlader P, et al. Grad-CAM++: generalized gradient-based visual explanations for deep convolutional networks[C]// Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2018: 839-847. 25 Zhang J M, Bargal S A, Lin Z, et al. Top-down neural attention by excitation backprop[J]. International Journal of Computer Vision, 2018, 126(10): 1084-1102. 26 Bach S, Binder A, Montavon G, et al. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation[J]. PLoS One, 2015, 10(7): e0130140. 27 Galhotra S, Pradhan R, Salimi B. Explaining black-box algorithms using probabilistic contrastive counterfactuals[C]// Proceedings of the 2021 International Conference on Management of Data. New York: ACM Press, 2021: 577-590. 28 Pope P E, Kolouri S, Rostami M, et al. Explainability methods for graph convolutional neural networks[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10764-10773. 29 Huang Q, Yamada M, Tian Y, et al. GraphLIME: local interpretable model explanations for graph neural networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(7): 6968-6972. 30 Vu M N, Thai M T. PGM-Explainer: probabilistic graphical model explanations for graph neural networks[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2020: 12225-12235. 31 Ying R, Bourgeois D, You J X, et al. GNNExplainer: generating explanations for graph neural networks[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2019: 9244-9255. 32 Luo D S, Cheng W, Xu D K, et al. Parameterized explainer for graph neural network[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2020: 19620-19631. 33 Li G H, Müller M, Thabet A, et al. DeepGCNs: can GCNs go as deep as CNNs?[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2020: 9266-9275. 34 Song C H, Tu C C, Yang C, et al. CED: credible early detection of social media rumors[OL]. (2018-11-10). https://arxiv.org/pdf/1811.04175.pdf. 35 Kochkina E, Liakata M, Zubiaga A. PHEME dataset for rumour detection and veracity classification[DS/OL]. (2018-06-10). https://doi.org/10.6084/m9.figshare.6392078.v1. 36 Wellman B. Culture of the Internet[M]. Marva: Lawrence Erlbaum Associates Publishers, 1997: 179-205. 37 Ni J M, Abrego G H, Constant N, et al. Sentence-T5: scalable sentence encoders from pre-trained text-to-text models[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2022: 1864-1874. 38 Vapnik V N, Chervonenkis A. A note on one class of perceptrons[J]. Automation and Remote Control, 1964, 25(12): 821-837. 39 Breiman L. Random forests[J]. Machine Language, 2001, 45(1): 5-32. 40 Chen T Q, Guestrin C. XGBoost: a scalable tree boosting system[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2016: 785-794. 41 McCallum A, Nigam K. A comparison of event models for naive Bayes text classification[C]// Proceedings of the AAAI-98 Workshop on Learning for Text Categorization. Palo Alto: AAAI Press, 1998: 41-48. 42 Shu K, Wang S H, Liu H. Understanding user profiles on social media for fake news detection[C]// Proceedings of the 2018 IEEE Conference on Multimedia Information Processing and Retrieval. Piscataway: IEEE, 2018: 430-435. 43 Prasad J. The psychology of rumour: a study relating to the great Indian earthquake of 1934[J]. British Journal of Psychology General Section, 1935, 26(1): 1-15. 44 刘于思, 徐煜. 在线社会网络中的谣言与辟谣信息传播效果: 探讨网络结构因素与社会心理过程的影响[J]. 新闻与传播研究, 2016, 23(11): 51-69, 127. 45 van der Maaten L, Hinton G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579-2605. 46 Kullback S, Leibler R A. On information and sufficiency[J]. The Annals of Mathematical Statistics, 1951, 22(1): 79-86.