叶佳鑫, 熊回香, 易明, 刘明. 融合影响力传播的社交网络群推荐方法[J]. 情报学报, 2022, 41(4): 364-374.
Ye Jiaxin, Xiong Huixiang, Yi Ming, Liu Ming. Group Recommendation in Social Networks Based on Influence Spread. 情报学报, 2022, 41(4): 364-374.
1 Berkovsky S, Freyne J. Group-based recipe recommendations: analysis of data aggregation strategies[C]// Proceedings of the Fourth ACM Conference on Recommender Systems. New York: ACM Press, 2010: 111-118. 2 Ardissono L, Goy A, Petrone G, et al. INTRIGUE: personalized recommendation of tourist attractions for desktop and hand held devices[J]. Applied Artificial Intelligence, 2003, 17(8/9): 687-714. 3 Kim J K, Kim H K, Oh H Y, et al. A group recommendation system for online communities[J]. International Journal of Information Management, 2010, 30(3): 212-219. 4 朱国玮, 杨玲. 基于遗传算法的群体推荐系统研究[J]. 情报学报, 2009, 28(6): 946-951. 5 李汶华, 熊晓栋, 郭均鹏. 一种基于案例推理和协商的群体推荐算法[J]. 系统工程, 2013, 31(11): 93-98. 6 何军, 刘业政, 王锦坤. 基于社会选择和社会影响的社交网络社群分类与群推荐策略研究[J]. 现代情报, 2018, 38(1): 92-99. 7 Pujahari A, Padmanabhan V. A new grouping method based on social choice strategies for group recommender system[C]// Proceedings of the Conference on Computational Intelligence in Data Mining. New Delhi: Springer, 2015, 1: 325-332. 8 王晰巍, 贾玺智, 刘婷艳, 等. 区块链环境下社交网络用户意见领袖识别与影响力研究[J]. 情报理论与实践, 2021, 44(5): 84-91. 9 Konstas I, Stathopoulos V, Jose J M. On social networks and collaborative recommendation[C]// Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2009: 195-202. 10 Bahari Sojahrood Z, Taleai M. A POI group recommendation method in location-based social networks based on user influence[J]. Expert Systems with Applications, 2021, 171: 114593. 11 王金喆. 社交网络用户影响力分析[J]. 电子技术与软件工程, 2017(17): 28. 12 Ma H, King I, Lyu M R. Learning to recommend with social trust ensemble[C]// Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2009: 203-210. 13 廖大强, 印鉴, 邬依林, 等. 基于兴趣传播的用户相似性计算方法研究[J]. 计算机应用与软件, 2015, 32(10): 95-100, 104. 14 丁兆云, 贾焰, 周斌, 等. 社交网络影响力研究综述[J]. 计算机科学, 2014, 41(1): 48-53. 15 张琳, 谢忠红. 基于聚类的微博用户类型与影响力研究[J]. 情报科学, 2016, 34(8): 57-61. 16 康书龙. 基于用户行为及关系的社交网络节点影响力评价——以微博研究为例[D]. 北京: 北京邮电大学, 2011. 17 刘玲, 杨长春. 一种新的微博社区用户影响力评估算法[J]. 计算机应用与软件, 2017, 34(7): 212-216, 261. 18 Hirsch J E. An index to quantify an individual’s scientific research output[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(46): 16569-16572. 19 王林, 潘陈益, 朱文静. 基于h指数、g指数和p指数的微博影响力评价对比研究[J]. 现代情报, 2018, 38(6): 11-18, 61. 20 王林, 刘继源, 马安进. 基于兴趣衰减的个性化排序算法[J]. 计算机工程, 2017, 43(9): 214-219, 227.