张艳丰, 彭丽徽, 刘金承, 洪闯. 新媒体环境下移动社交媒体倦怠用户画像实证研究[J]. 情报学报, 2019, 38(10): 1092-1101.
Zhang Yanfeng, Peng Lihui, Liu Jincheng, Hong Chuang. An Empirical Study on Mobile Social Media Fatigue User Portraits in the New Media Environment:A Causality Perspective Based on SSO Theory. 情报学报, 2019, 38(10): 1092-1101.
1 WangZ B, CuiX H, GaoL, et al. A hybrid model of sentimental entity recognition on mobile social media[J]. EURASIP Journal on Wireless Communications and Networking, 2016, 2016: Article No. 253. 2 MasurP K, ReineckeL, ZiegeleM, et al. The interplay of intrinsic need satisfaction and Facebook specific motives in explaining addictive behavior on Facebook[J]. Computers in Human Behavior, 2014, 39: 376-386. 3 BrightL F, KleiserS B, GrauS L. Too much Facebook? An exploratory examination of social media fatigue[J]. Computers in Human Behavior, 2015, 44: 148-155. 4 PostGuest. Facebook is facing user fatigue[EB/OL]. [2018-07-22]. http://www.hypebot.com/hypebot/2017/02/facebook-facing-user-fatigue.html. 5 OghumaA P, Libaque-SaenzC F, WongS F, et al. An expectation-confirmation model of continuance intention to use mobile instant messaging[J]. Telematics and Informatics, 2016, 33(1): 34-47. 6 SunY Q, LiuD N, ChenS J, et al. Understanding users’ switching behavior of mobile instant messaging applications: An empirical study from the perspective of push-pull-mooring framework[J]. Computers in Human Behavior, 2017, 75: 727-738. 7 CramerE M, SongH, DrentA M. Social comparison on Facebook: Motivation, affective consequences, self-esteem, and Facebook fatigue[J]. Computers in Human Behavior, 2016, 64: 739-746. 8 TromholtM. The Facebook experiment: Quitting Facebook leads to higher levels of well-being[J]. Cyberpsychology, Behavior, and Social Networking, 2016, 19(11): 661-666. 9 LeeC C, ChouS T H, HuangY R. A study on personality traits and social media fatigue-example of facebook users[J]. Lecture Notes on Information Theory, 2014, 2(3): 249-253. 10 LinK M. Predicting Asian undergraduates’ intention to continue using social network services from negative perspectives[J]. Behaviour & Information Technology, 2015, 34(9): 882-892. 11 LuqmanA, CaoX F, AliA, et al. Empirical investigation of Facebook discontinues usage intentions based on SOR paradigm[J]. Computers in Human Behavior, 2017, 70: 544-555. 12 ZhangS W, ZhaoL, LuY B, et al. Do you get tired of socializing? An empirical explanation of discontinuous usage behaviour in social network services[J]. Information & Management, 2016, 53(7): 904-914. 13 ChenW H, LeeK H. Sharing, liking, commenting, and distressed? The pathway between Facebook interaction and psychological distress[J]. Cyberpsychology, Behavior, and Social Networking, 2013, 16(10): 728-734. 14 YaoJ, CaoX F. The balancing mechanism of social networking overuse and rational usage[J]. Computers in Human Behavior, 2017, 75: 415-422. 15 IglesiasJ A, AngelovP, LedezmaA, et al. Creating evolving user behavior profiles automatically[J]. IEEE Transactions on Knowledge and Data Engineering, 2012, 24(5): 854-867. 16 NasraouiO, SolimanM, SakaE, et al. A web usage mining framework for mining evolving user profiles in dynamic web sites[J]. IEEE Transactions on Knowledge and Data Engineering, 2008, 20(2): 202-215. 17 LiuQ N, NiuK, HeZ Q, et al. Microblog user interest modeling based on feature propagation[C]// Proceedings of the Sixth International Symposium on Computational Intelligence Design. New York: IEEE, 2013: 383-386. 18 AbelF, GaoQ, HoubenG J, et al. Analyzing user modeling on twitter for personalized news recommendations[C]// Proceedings of the International Conference on User Modeling, Adaptation, and Personalization. Heidelberg: Springer, 2011: 1-12. 19 KimJ Y, Collins-ThompsonK, BennettP N, et al. Characterizing web content, interestsuser, and search behavior by reading level and topic[C]// Proceedings of the Fifth ACM International Conference on Web Search and Data Mining. New York: ACM Press, 2012: 213-222. 20 王洋, 丁志刚, 郑树泉, 等. 一种用户画像系统的设计与实现[J]. 计算机应用与软件, 2018, 35(3): 8-14. 21 杨帆. 画像分析为基础的图书馆大数据实践——以国家图书馆大数据项目为例[J]. 图书馆论坛, 2019(2): 58-64. 22 熊伟, 杭波, 李兵, 等. 一种集成用户画像与内容的服务重定向方法[J]. 小型微型计算机系统, 2017, 38(12): 2762-2765. 23 马超. 基于主题模型的社交网络用户画像分析方法[D]. 合肥: 中国科学技术大学, 2017. 24 单晓红, 张晓月, 刘晓燕. 基于在线评论的用户画像研究——以携程酒店为例[J]. 情报理论与实践, 2018, 41(4): 99-104, 149. 25 韩梅花, 赵景秀. 基于“用户画像”的阅读疗法模式研究——以抑郁症为例[J]. 大学图书馆学报, 2017, 35(6): 105-110. 26 AyyagariR, GroverV, PurvisR. Technostress: Technological antecedents and implications[J]. MIS Quarterly, 2011, 35(4): 831-858. 27 GlaserB G, StraussA L, StrutzelE. The discovery of grounded theory: Strategies of qualitative research[J]. Nursing Research, 1968, 17(4): 364. 28 陈向明. 扎根理论的思路和方法[J]. 教育研究与实验, 1999(4): 58-63, 73. 29 刘鲁川, 李旭, 张冰倩. 基于扎根理论的社交媒体用户倦怠与消极使用研究[J]. 情报理论与实践, 2017, 40(12): 100-106, 51. 30 HsiaoK L. Compulsive mobile application usage and technostress: The role of personality traits[J]. Online Information Review, 2017, 41(2): 272-295. 31 KhatamiA, MirghasemiS, KhosraviA, et al. A new PSO-based approach to fire flame detection using K-Medoids clustering[J]. Expert Systems with Applications, 2017, 68: 69-80. 32 RaiA, UpadhyayS H. Bearing performance degradation assessment based on a combination of empirical mode decomposition and k-medoids clustering[J]. Mechanical Systems and Signal Processing, 2017, 93: 16-29. 33 PekerM. A decision support system to improve medical diagnosis using a combination of k-medoids clustering based attribute weighting and SVM[J]. Journal of Medical Systems, 2016, 40(5): 116. 34 ChenY M, LiuX P, LiX, et al. Delineating urban functional areas with building-level social media data:A dynamic time warping (DTW) distance based k-medoids method[J]. Landscape and Urban Planning, 2017, 160: 48-60.