|
|
Structure, Behavior and Evolvement of Information Communication Network of WeChat Groups: Based on Conversation Analysis Perspective |
Ba Zhichao, Li Gang, Mao Jin, Xu Jian |
Center for Studies of Information Resources, Wuhan University, Wuhan 430072 |
|
|
Abstract The WeChat group has a complex conversational structure, involving different networking groups, user behaviors, and interactive modes, and it is extremely important to understand the information behaviors of WeChat users and communication relationships to reveal and grasp the network structure, behavior characteristics, and evolution law of information communication in a WeChat group. Based on the network community and conversational analysis theory, this paper applies social network analysis and content analysis methods to explore the network topology, user characteristics distribution, information interactivity types, and evolution law of WeChat groups with different target requirements. The results show that the sources of different types of WeChat groups have a strong aggregation, and some members basically dominate the exchange of information, which makes the user generated content (UGC) highly imbalanced. The enthusiasm of group members to participate in WeChat group chats is a decisive factor in group message distribution. Information communication in a WeChat group is “limited” and “fragmented” in nature without complete text meaning, and the conversation structure possesses an “infinite drift” or “infinite flow” nature. The expression of ideas in WeChat groups exhibits a “Spiral of Silence” phenomenon, which is influenced by group pressure, familiarity, and trust between group members. The whole session process of WeChat groups is composed of topic continuity, transfer, transformation, and reversal, in the same topic, the process also includes start, maintenance, silence, and end of the life cycle.
|
Received: 16 May 2017
|
|
|
|
[1] 腾讯科技. 2016微信数据报告发布[N/OL]. 腾讯网, (2016- 12-28) [2017-04-18]. http://tech.qq.com/a/2016122 8/018057.htm. [2] 蒋建国. 微信群:议题、身份与控制[J]. 探索与争鸣, 2015(11): 108-112. [3] 王芳, 翟羽佳. 微信群社会结构及其演化: 基于文本挖掘的案例分析[J]. 情报学报, 2016, 35(6): 617-629. [4] Ai C, Chen B, He L N, et al.The geographical characteristics of WeChat propagation network[C]// Theory, Methodology, Tools and Applications for Modeling and Simulation of Complex Systems. AsiaSim 2016, SCS AutumnSim 2016. Communications in Computer and Information Science. Singapore: Springer, 2016, 646: 282-292. [5] He J J, Wang T.Comparison and analysis of Microblog and WeChat based on information spreading models[C] //Proceeding of 6th International Conference on Machinery, Materials, Environment, Biotechnology and Computer (MMEBC), 2016: 1183-1188. [6] 傅慧芬, 赖元薇. 消费电子品品牌社交媒体内容营销策略研究—基于联想、华为、HTC和三星微信公众号的内容分析[J]. 管理评论, 2016, 28(10): 259-272. [7] 李玉芳. 出版社的微信社群营销策略探析[J]. 科技与出版, 2016, 35(8): 91-93. [8] Lien C H, Cao Y, Zhou X.Service quality, satisfaction, stickiness, and usage intentions: An exploratory evaluation in the context of WeChat services[J]. Computers in Human Behavior, 2017, 33(68): 403-410. [9] 江波, 覃燕梅. 基于微信的移动图书馆APP服务系统设计与实现[J]. 现代情报, 2013, 33(6): 55-57. [10] 刘永丹. 基于Netlogo的微信群舆情演化模型实现[J]. 无线互联科技, 2013(11): 197-198. [11] Traud A L, Mucha P J, Porter M A.Social structure of Facebook networks[J]. Physica A: Statistical Mechanics and its Applications, 2012, 391(16): 4165-4180. [12] Yuan W G, Liu Y.A mixing evolution model for bidirectional microblog user networks[J]. Physica A: Statistical Mechanics and its Applications, 2015, 432(8): 167-179. [13] Capocci A, Servedio V D, Colaiori F, et al.Preferential attachment in the growth of social networks: the internet encyclopedia Wikipedia[J]. Physical Review E, 2006, 74(3): 036116. [14] Ebel H, Mielsch L, Bornholdt S.Scale-free topology of e-mail networks[J]. Physical Review E, 2002, 66(3): 035103. [15] Barabási A L.The origin of bursts and heavy tails in human dynamics[J]. Nature, 2005, 435(7039): 207-211. [16] Zhang C L, Liu C, Mu H B.Growing topic network model based on BBS[C]// Proceeding of International Conference on Electrical Engineering and Automation Control. IEEE, 2011, 3478-3481. [17] Ellison N, Steinfield C, Lampe C.Spatially bounded online social networks and social capital[J]. International Communication Association, 2006, 18(13): 1-37. [18] Mislove A, Marcon M, Gummadi K P, et al.Measurement and analysis of online social networks[J]. ACM Sigcomm Conference on Internet Measurement, 2007, 71(1): 29-42. [19] Leskovec J, Horvitz E.Planetary-scale views on a large instant-messaging network[C]// Proceeding of the 17th international Conference on World Wide Web. New York: ACM Press, 2008: 915-924. [20] Ahn Y Y, Han S, Kwak H, et al.Analysis of topological characteristics of huge online social networking services[C]// Proceedings of the 16th International Conference on World Wide Web. New York: ACM Press, 2007: 835-844. [21] Wang B, Tang H, Guo C, et al.Optimization of network structure to random failures[J]. Physica A: Statistical Mechanics and its Applications, 2006, 368(2): 607-614. [22] 李钊, 郭燕慧, 徐国爱, 等. 复杂网络中带有应急恢复机理的级联动力学分析[J]. 物理学报, 2014, 63(15): 158901. [23] Kumar R, Novak J, Tomkins A.Structure and evolution of online social networks[C]// Proceedings of the 12th ACM SIGKDD Intemational Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2006: 611-617. [24] Goncalves B, Ramasco J J.Human dynamics revealed through Web analysis[J]. Physical Review E, 2008, 78(2): 026123. [25] Grabowski A, Kruszewska N, Kosiński R A.Dynamic phenomena and human activity in an artificial society[J]. Physical Review E, 2008, 78(6): 066110. [26] 宛卫国. 微博用户行为分析和网络结构演化的研究[D]. 北京: 北京交通大学, 2014. [27] Wu S M, Hofman J M, Mason W A, et al.Who says what to whom on twitter[C]// Proceedings of the 20th International Conference on World Wide Web. New York: ACM Press, 2011: 705-714. [28] Benevenuto F, Rodrigues T, Cha M, et al.Characterizing user nabigation and interactions in online social networks[J]. Information Sciences, 2012, 195(13): 1-24. [29] Pal A, Counts S.Identifying topical authorities in microblogs[C]// Proceedings of the 4th ACM Intemational Conference on Web Search and Data Mining. New York: ACM Press, 2011: 45-54. [30] Lee C H.Mining spatio-temporal information on microblogging streams using adensity-based online clustering method[J]. Expert Systems with Applications, 2012, 39(10): 9623-9641. [31] Sachan M, Contractor D, Faruquie T A, et al.Using content and interactions for discovering communities in social networks[C]// Proceedings of the 21St International Conference on World Wide Web. New York: 2012: 331-340. [32] Ginsberg J, Mohebbi M H, Patel R S, et al.Detecting influenza epidemics using search engine query data[J]. Nature, 2008, 457(7232): 1012-1014. [33] Zhao Z D, Zhou T.Empirical analysis of online human dynamics[J]. Physica A: Statistical Mechanics and Its Applications, 2012, 391(11): 3308-3315. [34] Goffman J H.Garfinkel and conversation analysis[M]// Wetherall M, Taylor S, Yates S J. Discourse Theory and Practice. London: SAGE, 2001: 47-56. [35] 吴亚欣, 于国栋. 为会话分析正名[J]. 山西大学学报(哲学社会科学版), 2017, 40(1): 85-90. [36] 崔国鑫. 语用视野下的会话分析[D]. 北京: 首都师范大学, 2009. [37] 谢新洲, 安静, 王尧. 基于技术接受模型的微信用户信息发布行为研究[J]. 情报学报, 2015, 34(8): 801-808. [38] 薛杨, 许正良. 微信营销环境下用户信息行为影响因素分析与模型构建—基于沉浸理论的视角[J]. 情报理论与实践, 2016, 39(6): 104-109. [39] Peng X X, Zhao Y X, Zhu Q H.Investigating user switching intention for mobile instant messaging application: Taking WeChat as an example[J]. Computers in Human Behavior, 2016, 64: 206-216. [40] Sacks H.Notes on methodology[M]// Atkinson J M, Eritage J. Structure of Social Action: Studies in Conversation Analysis. Cambridge: Cambridge University Press, 1984: 21-27. [41] 新京报书评周刊. 图像的生产与传播是政治参与还是狂欢?[EB/OL]. http://www/anyv.net/index.php/article -156810. [42] 袁方. 论“沉默的螺旋”在微信中的多元呈现[J]. 中国传媒科技, 2016(6): 21-23. |
|
|
|