|
|
Research on Lagging Effect of Topic Diffusion Evolution Face to Prediction of Research Front |
Liu Ziqiang1, 2, Xu Haiyun1, 2, Yue Lixin3, Fang Shu1 |
1. Chengdu Library of Chinese Academy of Sciences, Chengdu 610041; 2. Department of Library, Information and Archives Management, School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100049; 3. School of Information Resource Management, Renmin University of China, Beijing 100872 |
|
|
Abstract There is a lag in the diffusion of topics from fund projects and papers. Exploring the lag effect of the diffusion and evolution of research topics in fund projects and papers will be helpful to the front topic recognition research of multi-source data fusion. First, LDA (latent Dirichlet allocation) model is used to identify research topics contained in fund projects and paper texts, and similarity is used to construct the association between topics; then, the research front topics are detected by the degree of emergence and attention index of the topics, so as to identify the important research front topics. Further, using the autoregressive distribution lag model and the visualization method of topic diffusion evolution path, this paper analyzes the diffusion lag effect of fund projects and academic papers from the perspectives of external quantitative characteristics and internal topic characteristics. A case study was carried out on the fund project and papers data in the field of artificial intelligence (AI) in 2000-2017 in the US. The results showed that the topics in the fund projects and the papers were obviously lagging. The late stagnation for the topics in the fund projects was two years (2.027888 lag phase relation), and when the lag period is over three years, its influence gradually decreases.
|
Received: 26 September 2018
|
|
|
|
[1] Price D J.Networks of science papers[J]. Science, 1965, 149(3683): 510-515. [2] Small H.Co-citation in the scientific literature: A new measure of the relationship between two documents[J]. Journal of the American Society for Information Science, 1973, 24(4): 265-269. [3] Persson O.The intellectual base and research fronts of JASIS 1986-1990[J]. Journal of the American Society for Information Science, 1994, 45(1): 31-38. [4] Garfield E.Research fronts[J]. Current Contents, 1994, 41: 3-7. [5] 静发冲, 李晨英, 韩明杰, 等. 基于文本挖掘的美国 NSF 生物科学部新兴前沿项目主题分析[J]. 现代情报, 2014, 34(12): 107-112. [6] 郑彦宁, 许晓阳, 刘志辉. 基于关键词共现的研究前沿识别方法研究[J]. 图书情报工作, 2016, 60(4): 85-92. [7] 许晓阳, 郑彦宁, 刘志辉. 论文和专利相结合的研究前沿识别方法研究[J]. 图书情报工作, 2016, 60(24): 97-106. [8] 王效岳, 刘自强, 白如江, 等. 基于基金项目数据的研究前沿主题探测方法[J]. 图书情报工作, 2017, 61(13): 87-98. [9] 李贺, 袁翠敏, 赵蕴华, 等. 美国NSF科研项目立项与专利信息关联关系分析的案例研究[J]. 情报学报, 2017, 36(1): 5-17. [10] 武华维, 罗瑞, 许海云, 等. 科学技术关联视角下的创新演化路径识别研究述评[J]. 情报理论与实践, 2018, 60(24): 97-106. [11] 刘自强, 王效岳, 白如江. 语义分类的学科主题演化分析方法研究[J]. 图书情报工作, 2016, 60(15): 76-85, 93. [12] Yu G, Wang M Y, Yu D R.Characterizing knowledge diffusion of Nanoscience & Nanotechnology by citation analysis[J]. Scientometrics, 2010, 84(1): 81-97. [13] 邱均平, 瞿辉, 罗力. 基于期刊引证关系的学科知识扩散计量研究——以我国“图书馆、情报、档案学”为例[J]. 情报科学, 2012, 30(4): 481-485. [14] 侯剑华, 王仲禹. 研究主题的知识流动测度及其实证分析——以H指数研究为例[J]. 图书情报工作, 2017, 61(10): 87-93. [15] 许海云, 郭婷, 岳增慧. 基于TI指标系列的情报学学科交叉主题研究[J]. 情报学报, 2015, 34(10): 1067-1078. [16] 岳增慧, 许海云. 学科知识扩散过程探测研究——以社会网络领域为例[J]. 图书情报工作, 2016, 60(9): 106-115. [17] 段哲哲, 周义程. 创新扩散时间形态的S型曲线研究——要义、由来、成因与未来研究方向[J]. 科技进步与对策, 2018, 35(8): 155-160. [18] Blei D M, Ng A Y, Jordan M I.Latent dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022. [19] Blei D M, Lafferty J.Dynamic topic models[C]// Proceedings of the 23rd International Conference on Machine Learning. New York: ACM Press, 2006: 113-120. [20] Jimenez S, Gonzalez F A, Gelbukh A. Mathematical properties of soft cardinality: Enhancing Jaccard, Dice and cosine similarity measures with element-wise distance[J]. Information Sciences, 2016, 367-368: 373-389. [21] 范云满, 马建霞. 基于LDA与新兴主题特征分析的新兴主题探测研究[J]. 情报学报, 2014, 33(7): 698-711. [22] Sunde T.Foreign direct investment, exports and economic growth: ADRL and causality analysis for South Africa[J]. Research in International Business and Finance, 2017, 41: 434-444. |
|
|
|