|
|
Research on the Application Model of Knowledge Innovation Service Based on Data Science |
Cao Jiajun1, Wang Yuefen1, 2 |
1. School of Economics and Management, Nanjing University of Science & Technology, Nanjing 210094; 2. Jiangsu Social Public Security Technology Cooperative Innovation Center, Nanjing 210094 |
|
|
Abstract In the era of big data, knowledge demand has changed. The existing knowledge service model is not feasible for the development of knowledge innovation and for the transformation of data-intensive scientific research paradigms. Therefore, it is necessary to establish an application pattern facing knowledge innovation by introducing data science. Through summarizing knowledge innovation, knowledge service, and data science, this research explores the concept and characteristics of knowledge innovation service and the aim of introducing data science. Additionally, it analyzes the current situation in knowledge innovation service model research. Further, it presents the aim and the demand of knowledge innovation service model; and finally, it tries to build an application pattern of knowledge innovation service based on data science. The research considers that the application pattern of knowledge innovation service based on data science consists of three layers: database layer, analysis logic layer, and result presentation layer. Based on knowledge content analysis, knowledge innovation model, and other angles, this paper expounds the service model of knowledge innovation from four different perspectives.
|
Received: 26 September 2018
|
|
|
|
[1] 刘艳红, 罗健. 数据密集型科学环境下的情报服务与发展[J]. 图书与情报, 2013, 2013(6): 105-108. [2] Hey T.The Fourth Paradigm - Data-intensive scientific discovery[C]// Proceedings of the International Symposium on Information Management in a Changing World. Heidelberg: Springer, 2012, 317: 1. [3] 杨京, 王效岳, 白如江, 等. 大数据背景下数据科学分析工具现状及发展趋势[J]. 情报理论与实践, 2015, 38(3): 134-137. [4] 曹嘉君, 周晴雪, 王曰芬. 知识创新的研究状况与科学知识创新面临的大数据挑战[J]. 数字图书馆论坛, 2018(4): 59-65. [5] Clair G S, Reich M J.Knowledge services: financial strategies and budgeting[J]. Immunochemistry, 2002, 14(2): 85-90. [6] Simard A, Broome J, Drury M, et al. Understanding knowledge services at Natural Resources Canada[R/OL]. http://publications. gc.ca/site/eng/313224/publication.html. [7] 张晓林. 走向知识服务[M]. 成都: 四川大学出版社, 2001. [8] 刘海君. 基于知识管理的创新服务模式[J]. 大学图书情报学刊, 2005, 23(4): 31-33 [9] 姜永常. 知识创新与知识服务[J]. 图书与情报, 2001(1): 24-26. [10] Cleveland W S.Data Science: An action plan for expanding the technical areas of the field of statistics[J]. International Statistical Review, 2001, 69(1): 21-26. [11] 巴志超, 李纲, 周利琴, 等. 数据科学及其对情报学变革的影响[J]. 情报学报, 2018, 37(7): 653-667. [12] 朝乐门. 数据科学理论与实践[M]. 北京: 清华大学出版社, 2017: 15. [13] 王曰芬, 谢清楠, 宋小康. 国外数据科学研究的回顾与展望[J]. 图书情报工作, 2016, 60(14): 5-14. [14] Miles I, Andersen B, Boden M, et al.Service production and intellectual property[J]. International Journal of Technology Management, 2000, 1(2): 37-57. [15] 张玉珍. 知识创新与图书馆知识服务[J]. 情报资料工作, 2005, 26(2): 81-84. [16] 王娜. 基于语义网的协作式知识创新服务系统的设计[J]. 情报杂志, 2009, 28(12): 138-142. [17] 胡莲香. 走向大数据知识服务: 大数据时代图书馆服务模式创新[J]. 农业图书情报学刊, 2014, 26(2): 173-177. [18] 马天舒. 基于知识生命周期的高校图书馆知识服务[J]. 图书馆学刊, 2012(3): 70-72. [19] 曹霞, 韦华昌. 基于知识服务的高校图书馆图书采访“双驱”创新模式研究[J]. 情报科学, 2013, 31(10): 66-69, 153. [20] 胡芳. 高校图书馆知识服务创新模式研究[J]. 青海师范大学学报(哲学社会科学版), 2013, 35(5): 165-166. [21] 闫闵, 过仕明. 高校数字图书馆知识服务模式创新研究——基于读者行为偏好[J]. 情报科学, 2018, 36(5): 35-40. [22] 席玉爱, 陈泽宇, 刘芳, 等. 大数据时代医院图书馆知识服务创新[J]. 中国药物与临床, 2018(2): 293-295. [23] 郭彩. 创新农业专业图书馆知识服务模式的思考[J]. 天津农业科学, 2011, 17(6): 78-80. [24] Gil Press.A very shot history of data science[EB/OL]. [2016- 06-02]. http: //www.forbes.com/sites/gilpress/2013/05/28/a-very- short-history-of-data-science/#6575961c69fd. [25] 叶鹰, 马费成. 数据科学兴起及其与信息科学的关联[J]. 情报学报, 2015, 34(6): 575-580. [26] 唐晓波, 魏巍. 知识融合:大数据时代知识服务的增长点[J]. 图书馆学研究, 2015(5): 9-14. [27] 周芳, 王鹏波, 韩立岩. 多源知识融合处理算法[J]. 北京航空航天大学学报, 2013, 39(1): 109-114. [28] 陈思. 面向产品设计的语义化知识服务关键技术研究[D]. 北京: 北京理工大学, 2015. |
|
|
|